• Title/Summary/Keyword: through-thickness crack

Search Result 170, Processing Time 0.022 seconds

Structural Behavior Analysis of Skew RC Slabs by p-Version Nonlinear Finite Element Model (p-Version 비선형 유한요소 모델에 의한 철근 콘크리트 경사 슬래브의 역학적 거동 해석)

  • Cho, Jin-Goo;Park, Jin-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.5
    • /
    • pp.17-26
    • /
    • 2005
  • The objectives of this study are to determine the behavior of simply supported skew RC slabs subjected to a point load. The p-version nonlinear skew RC FE model has been used. Integrals of Legendre polynomials are used for shape functions with p-level varying from 1 to 10. In the nonlinear formulation of this model, the material model is based on the Kupfer's yield criterion, hardening rule, and crushing condition and layered model is used through the thickness. The cracking behavior is modeled by a smeared crack model and the fixed crack approach is adopted as the crack model. It is shown that the proposed model is able to adequately predict the deflection and ultimate load of nonlinear skew RC slabs with respect to steel arrangements and steel ratios.

Crack initiation and fragmentation processes in pre-cracked rock-like materials

  • Lee, Jooeun;Hong, Jung-Wuk
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1047-1059
    • /
    • 2018
  • This paper focuses on the cracking and fragmentation process in rock materials containing a pair of non-parallel flaws, which are through the specimen thickness, under vertical compression. Several numerical experiments are conducted with varying flaw arrangements that affect the initiation and tensile wing cracks, shear crack growth, and crack coalescing behaviors. To obtain realistic numerical results, a parallelized peridynamics formulation coupled with a finite element method, which is able to capture arbitrarily occurring cracks, is employed. From previous studies, crack initiation and propagation of tensile wing cracks, horsetail cracks, and anti-wing cracks are well understood along with the coalescence between two parallel flaws. In this study, the coalescence behaviors, their fragmentation sequences, and the role of an x-shaped shear band in rock material containing two non-parallel flaws are discussed in detail on the basis of simulation results strongly correlated with previous experimental results. Firstly, crack initiation and propagation of tensile wing cracks and shear cracks between non-parallel flaws are investigated in time-history and then sequential coalescing behavior is analyzed. Secondly, under the effect of varying inclination angles of two non-parallel flaws and overlapping ratios between a pair of non-parallel flaws, the cracking patterns including crack coalescence, fragmentation, and x-shaped shear band are investigated. These numerical results, which are in good agreement with reported physical test results, are expected to provide insightful information of the fracture mechanism of rock with non-parallel flaws.

A Study on Fatigue Crack Growth of Composite Patching Repaired on Cracked Thick Plate (복합재료 보강재로 보수되어진 균열을 가진 두꺼운 평판의 피로균열 성장에 관한 연구)

  • Jeong, Gi-Hyeon;Yang, Won-Ho;Go, Myeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2070-2077
    • /
    • 2001
  • An experimental investigation of the effect of composite patching repair was conducted to characterize the fatigue crack growth behavior in thick A16061-T6 (6mm) panels with single bonded patch by fiber reinforced composite patch. Four patch lengths and no patch plate were examined. An analytical procedure, involving three-dimensional finite element method having three layers to model cracked aluminum plate, epoxy by adhesive and composite Patch, is calculated the stress intensity factors. From the calculated stress intensity factors, the fatigue crack growth rates are obtained. At the single patching type, different fatigue crack growth ratios through the palate thickness were investigated by using the experimental and analytical results. The results demonstrated that there was a definite variation in fatigue life depending on the size of composite patch. While crack reached the patch end, retardation of crack growth was also revealed in the bonded repair.

Vibration-Based Damage Detection Method for Tower Structure (타워 구조물의 진동기반 결함탐지기법)

  • Lee, Jong-Won;Kim, Sang-Ryul;Kim, Bong-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.320-324
    • /
    • 2013
  • A crack identification method using an equivalent bending stiffness for cracked beam and committee of neural networks is presented. The equivalent bending stiffness is constructed based on an energy method for a straight thin-walled pipe, which has a through-the-thickness crack, subjected to bending. Several numerical analysis for a steel cantilever pipe using the equivalent bending stiffness are carried out to extract the natural frequencies and mode shapes of the cracked beam. The extracted modal properties are used in constructing a training patterns of a neural network. The input to the neural network consists of the modal properties and the output is composed of the crack location and size. Multiple neural networks are constructed and each individual network is trained independently with different initial synaptic weights. Then, the estimated crack locations and sizes from different neural networks are averaged. Experimental crack detection is carried out for 3 damage cases using the proposed method, and the identified crack locations and sizes agree reasonably well with the exact values.

  • PDF

A development of fabrication processes of microstructure using SU-8 PR (SU-8 PR을 이용한 마이크로 구조물 제작 공정 개발)

  • 김창교;장석원;노일호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.2
    • /
    • pp.68-72
    • /
    • 2003
  • In this paper, we developed a new thick photoresist fabrication technology for 3-dimensional microstructures. In general, like as AZ photoresist was coated with thin film thickness about 1 $\mu\textrm{m}$ to 30 $\mu\textrm{m}$, but photoresist like SU-8 has thickness of several tens $\mu\textrm{m}$ or more and high aspect ratio. When we fabricate a microstructure using the thick photoresist like SU-8, cracks on the SU-8 thick photoresist are appeared by stress which was caused by sudden cooling down during bake of the thick photoresist spun on wafer. Thus, it was hard to fabricate the microstructure using the thick photoresist for electroplating. In this paper, we developed a new process to produce a 3-dimensional microstructure without the crack by stress through a suitable thick photoresist coating, time control of cool down and time control of PEB (Post Expose Bake).

Fracture Mechanics Analysis of Cracked Plate Repaired by Patch (I) (보강재로 보수된 균열평판의 파괴역학적 해석(I))

  • Jeong, Gi-Hyeon;Yang, Won-Ho;Jo, Myeong-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2000-2006
    • /
    • 2000
  • The enhancement of service life of damaged or cracked structures is currently major issue to the researchers and engineers. In order to improve the life of cracked aging aircraft structures, the repair technique which uses adhesively bonded boron/epoxy composite patches is being widely considered as a cost-effective and reliable method. This paper is to study the performance of the bonded composite patch repair of a plate containing an inclined central through-crack. A 3-dimensional finite element method having three layers to the cracked plate, composite patch and adhesive layer, is used to compute the stress intensity factor. In this paper, the reduction of stress intensity factors near the crack-tip are determined to evaluate the effects of various non-dimensional design parameter including composite patch thickness, and material properties of the composite patch and thickness of the adhesive layer, materials of patch etc., and the crack length, Finally, The problem of how to optimize the patch geometric configurations has been discussed.

A new approach for finite element analysis of delaminated composite beam, allowing for fast and simple change of geometric characteristics of the delaminated area

  • Perel, Victor Y.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.5
    • /
    • pp.501-518
    • /
    • 2007
  • In this work, a new approach is developed for dynamic analysis of a composite beam with an interply crack, based on finite element solution of partial differential equations with the use of the COMSOL Multiphysics package, allowing for fast and simple change of geometric characteristics of the delaminated area. The use of COMSOL Multiphysics package facilitates automatic mesh generation, which is needed if the problem has to be solved many times with different crack lengths. In the model, a physically impossible interpenetration of the crack faces is prevented by imposing a special constraint, leading to taking account of a force of contact interaction of the crack faces and to nonlinearity of the formulated boundary value problem. The model is based on the first order shear deformation theory, i.e., the longitudinal displacement is assumed to vary linearly through the beam's thickness. The shear deformation and rotary inertia terms are included into the formulation, to achieve better accuracy. Nonlinear partial differential equations of motion with boundary conditions are developed and written in the format acceptable by the COMSOL Multiphysics package. An example problem of a clamped-free beam with a piezoelectric actuator is considered, and its finite element solution is obtained. A noticeable difference of forced vibrations of the delaminated and undelaminated beams due to the contact interaction of the crack's faces is predicted by the developed model.

The Effect of Nitric Acid Catalyst on the Properties of Lead Titanate Thin Films by Sol Gel Spin Coating (졸겔 스핀 코팅에서 질산촉매가 티탄산연 박막의 물성에 미치는 영향)

  • 이전국;정형진;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.11
    • /
    • pp.859-864
    • /
    • 1991
  • High quality lead titanate thin films were fabricated by spin coating on a silicon substrate. The resulting dried gel layers were uniform in thickness through 2$\times$2 $\textrm{cm}^2$ area, and polycrystalline perovskite structures developed almost crack free with a heat treatment above 50$0^{\circ}C$ in films with thickness above 360 nm. Metastable pyrochlore structures were observed in films with thickness of 160 nm when heat treated at 500 and $600^{\circ}C$, but these structure did not appear in films with thickness of 360 nm. The thickness dependence in crystal structure of films was studied. by varying the substrate condition and analyzing the interface between the film and substrate. In native oxide films on silicon stbstrates, amorphous dried gel layers were heterogeneously nucleated. Metastable cubic pyrochlore structure could be crystallized in amorphous native oxide.

  • PDF

Experimental Study on Evaluation of Fatigue Crack Growth Rate of Steel Plates using Crack Opening Displacement (COD(Crack Opening Displacement) 측정을 통한 강재의 피로균열진전속도 추정에 관한 실험적 연구)

  • Kim, Kwang-Jin;Kim, In-Tae;Ryu, Yong-Yeol
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.589-597
    • /
    • 2010
  • Steel structures have a higher probability of being damaged by fatigue than by other causes of deterioration. As such, their maintenance to prevent fatigue damage is essential to sustain their safety and performance during their service period. In their maintenance, the current state of their fatigue cracks must be assessed to determine appropriate reinforcement methods and the suitable time intervals of periodic inspections when fatigue cracks are detected. Determining the crack growth rate is a successful method of predicting fractures, but it requires technical knowledge on fracture mechanics and experience in numerical methods and software for finite element analysis. In this study, a fatigue crack growth test on through-thickness cracked steel plates was conducted to assess the crack growth rate without superior technical knowledge and experience. The relationship between the Crack Opening Displacement (COD) and the crack growth rate was found in relatively long fatigue cracks.

Study on the Effects of Surface Treatment and Stitching on the Fracture Behavior of Composite Laminates (계면처리와 스타칭이 복합적층판의 파괴거동에 미치는 영향 연구)

  • Hong, S.Y;Hwang, W;Park, H.C;Han, K.S
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.806-815
    • /
    • 1996
  • The interlaminar fracture behavior of woven laminates under static and cyclic loadings has been studied using DCB(double cantilever beam) specimens. The effects of surface treatment and stiching on the fracture behavior of composite laminates are investigated experimentally. Fracture toughness has been improved by surface treatment because the surface treatment can change the fracture mechanism of laminates. SCB(stitched cantilever beam) model has been proposed to quantify the effect of through-thickness resinforcement(stiching) in improving the delamination crack growth resistance. Distributed loads which are transfered to through-thickness fibers can be calculated by the SCB model. And fracture energy increase due to the distributed load can be predicted by a power function of the distributed load. A new parameter agreed well proposed predict fatigue crack growth rate. The predictions using this parameter agreed well with the experimental data.