In this paper, to overcome the failure of binarization for the characters suffered from low contrast and non-uniform illumination in license plate character recognition system, we improved the binarization method by combining local thresholding with global thresholding and edge detection. Firstly, apply the local thresholding method to locate the characters in the license plate image and then get the threshold value for the character based on edge detector. This method solves the problem of local low contrast and non-uniform illumination. Finally, back-propagation Neural Network is selected as a powerful tool to perform the recognition process. The results of the experiments i1lustrate that the proposed binarization method works well and the selected classifier saves the processing time. Besides, the character recognition system performed better recognition accuracy 95.7%, and the recognition speed is controlled within 0.3 seconds.
In this paper we suggest two novel methods for an implementation of the spot detection phase in the 2-DE gel image analysis program. The one is the adaptive thresholding method for eliminating noises and the other is the asymmetric diffusion model for spot matching. Remained noises after the preprocessing phase cause the over-segmentation problem by the next segmentation phase. To identify and exclude the over-segmented background regions, il we use a fixed thresholding method that is choosing an intensity value for the threshold, the spots that are invisible by one's human eyes but mean very small amount proteins which have important role in the biological samples could be eliminated. Accordingly we suggest the adaptive thresholding method which comes from an idea that is got on statistical analysis for the prominences of the peaks. There are the Gaussian model and the diffusion model for the spot shape model. The diffusion model is the closer to the real spot shapes than the Gaussian model, but spots have very various and irregular shapes and especially asymmetric formation in x-coordinate and y-coordinate. The reason for irregularity of spot shape is that spots could not be diffused perfectly across gel medium because of the characteristics of 2-DE process. Accordingly we suggest the asymmetric diffusion model for modeling spot shapes. In this paper we present a brief explanation ol the two methods and experimental results.
This study proposes new automatic thresholding method, which is important step for detecting binary change/non-change information using satellite images. Result value through pixel-based similarity measurement is calculated cumulatively with regular interval, and thresholding is pointed at the steep slope position. The proposed method is assessed in comparison with expectation-maximization algorithm and coner method using synthetic images, ALI images, and Hyperion images. Throughout the results, we validated that our method can guarantee the similar accuracy with previous algorithms. It is simpler than EM algorithm, and can be applied to the binormal histogram unlike the coner method.
Kim, Hak-Kyeong;Lee, Sun-Hee;Lee, Myung-Suk;Kim, Sang-Bong
Transactions on Control, Automation and Systems Engineering
/
v.4
no.3
/
pp.224-230
/
2002
In this paper, a counting algorithm hybridized with an adaptive automatic thresholding method based on Otsu's method and the algorithm that elongates markers obtained by the well-known watershed algorithm is proposed to enhance the exactness of the microcell counting in microscopic images. The proposed counting algorithm can be stated as follows. The transformed full image captured by CCD camera set up at microscope is divided into cropped images of m$\times$n blocks with an appropriate size. The thresholding value of the cropped image is obtained by Otsu's method and the image is transformed into binary image. The microbial cell images below prespecified pixels are regarded as noise and are removed in tile binary image. The smoothing procedure is done by the area opening and the morphological filter. Watershed algorithm and the elongating marker algorithm are applied. By repeating the above stated procedure for m$\times$n blocks, the m$\times$n segmented images are obtained. A superposed image with the size of 640$\times$480 pixels as same as original image is obtained from the m$\times$n segmented block images. By labeling the superposed image, the counting result on the image of microbial cells is achieved. To prove the effectiveness of the proposed mettled in counting the microbial cell on the image, we used Acinetobacter sp., a kind of ammonia-oxidizing bacteria, and compared the proposed method with the global Otsu's method the traditional watershed algorithm based on global thresholding value and human visual method. The result counted by the proposed method shows more approximated result to the human visual counting method than the result counted by any other method.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.43
no.5
s.311
/
pp.29-37
/
2006
Thresholding is a fundamental approach to segmentation that utilizes a significant degree of pixel popularity or intensity. Otsu's thresholding employed the normalized histogram as a discrete probability density function. Also it utilized a criterion that minimizes the between-class variance of pixel intensity to choose a threshold value for segmentation. However, the Otsu's method has a disadvantage of repeatedly searching optimal thresholds for the entire range. In this paper, a simple but fast multi-level thresholding approach is proposed by means of extending the Otsu's method. Rather than invoke the Otsu's method for the entire gray range, we advocate that the gray-level range of an image be first divided into smaller sub-ranges, and that the multi-level thresholds be achieved by iteratively invoking this dividing process. Initially, in the proposed method, the gray range of the object image is divided into 2 classes with a threshold value. Here, the threshold value for segmentation is selected by invoking the Otsu's method for the entire range. Following this, the two classes are divided into 4 classes again by applying the Otsu's method to each of the divided sub-ranges. This process is repeatedly performed until the required number of thresholds is obtained. Our experimental results for three benchmark images and fifty faces show a possibility that the proposed method could be used efficiently for pattern matching and face recognition.
Journal of the Korean Society of Manufacturing Technology Engineers
/
v.8
no.3
/
pp.92-99
/
1999
The inspection unit which is developed and used in this study, is processed the shape data from the CCD camera to seek welding bite section shape, and then calculated as a real dimension from measuring the value of each inspection item. The reason of measuring with the real in this study is came out from the image method which used for a long time, which is extricated the characteristic as the dimension of pixel by recognize pixel. The measurement method of the section shape is that we decide the thresholding value after we drew the histogram to binarizate the object. After that, we make flat the object to get rid of the noise and measure the shape of welded part through the boundarization of the object. The shape measurement is that measure the value of the welding part to adapt the actual operation program from using the ratio between the actual dimension of the standard specimen and the dimension of image, to measure the ratio between the actual product and the camera image. The inspection algorithm which estimates the quality of welded product is developed and also, the software GUI(Graphic User Interface) which processes the automatic test function of the inspection system is developed. We make the foundation of the inspection automatic system and we will help to apply other welding machine.
Journal of the Institute of Electronics and Information Engineers
/
v.50
no.6
/
pp.276-286
/
2013
SVD-based deconvolution algorithm has been known as the most effective technique for CT perfusion image analysis. In this algorithm, in order to reduce noise effects, SVD coefficients smaller than a certain threshold are removed. As the truncation threshold, either a fixed value or a variable threshold yielding a predetermined OI (oscillation index) is frequently employed. Each of these two thresholding methods has an advantage to the other either in accuracy or efficiency. In this paper, we propose a Monte Carlo simulation method to evaluate the accuracy of the two methods. An extension of the proposed method is presented as well to measure the effects of image smoothing on the accuracy of the thresholding methods. In this paper, after the simulation method is described, experimental results are presented using both simulated data and real CT images.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.42
no.6
/
pp.93-100
/
2005
We propose an optimal thresholding method for the voxel coloring in the reconstruction of a 3D shape. Our purposed method is a new approach to resolve the trade-off error of the threshold value on determining the photo-consistency in the conventional method. Optimal thresholding value is decided to compare the photo-consistency of a surface with inside voxel on the optic ray of the center camera. As iterating the process of the vokels, the threshold is approached to the optimal value for the individual surface voxel. And also, graph cut method is reduced to the surface noise on eliminating neighboring voxel. To verify the proposed algorithm, we simulated in the virtual and real environment. It is advantaged to speed up and accuracy of a 3D face reconstruction by applying the methods of optimal threshold and graph as compare with conventional algorithms.
Purpose: Determining an appropriate thresholding is crucial for PDG PET analysis since strong control of Type I error could fail to find pathological differences between eariy Alzheimer' disease (AD) patients and healthy normal controls. We compared the SPM results on FDG PET imaging of early AD using uncorrected p-value, random-field based corrected p-value and false discovery rate (FDR) control. Materials and Methods: Twenty-eight patients ($66{\pm}7$ years old) with early AD and 18 age-matched normal controls ($68{\pm}6$ years old) underwent FDG brain PET. To identify brain regions with hypo-metabolism in group or individual patient compared to normal controls, group images or each patient's image was compared with normal controls usingthe same fixed p-value of 0.001 on uncorrected thresholding, random-field based corrected thresholding and FDR control. Results: The number of hypo-metabolic voxels was smallest in corrected p-value method, largest in uncorrected p-value method and intermediate in FDG thresholding in group analysis. Three types of result pattern were found. The first was that corrected p-value did not yield any voxel positive but FDR gave a few significantly hypometabolic voxels (8/28, 29%). The second was that both corrected p-value and FDR did not yield any positive region but numerous positive voxels were found with the threshold of uncorrected p-values (6/28, 21%). The last was that FDR was detected as many positive voxels as uncorrected p-value method (14/28, 50%). Conclusions FDR control could identify hypo-metaboiic areas in group or individual patients with early AD. We recommend FDR control instead of uncorrected or random-field corrected thresholding method to find the areas showing hypometabolism especially in small group or individual analysis of FDG PET.
In this paper an algorithm, based on extracting a certain target of an image, is proposed that is capable of performing bilevel thresholding of image with multimodal distribution. Each pixel in the image has a membership value which is used to denote the characteristic relationship between the pixel and its belonging region (i.e. the object or background). Using the membership values of image set, a new measurement, which simultaneously measures the measure of fuzziness and the conditional entropy of the image, is calculated. Then, thresholds are found by optimally minimizing calculated measurement. In addition, a fuzzy range is defined to improve the threshold values. The experimental results demonstrate that the proposed approach can select the thresholds automatically and effectively extract the meaningful target from the input image. The resulting image can preserve the object region we target very well.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.