• Title/Summary/Keyword: threshold porosity

Search Result 18, Processing Time 0.024 seconds

Simulation of Pore Interlinkage in the Rim Region of High Burnup $UO_2$Fuel

  • Koo, Yang-Hyun;Oh, Je-Yong;Lee, Byung-Ho;Cheon, Jin-Sik;Joo, Hyung-Koo;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.55-63
    • /
    • 2003
  • Threshold porosity above which fission gas release channels would be formed in the rim egion of high burnup UO$_2$ fuel was estimated by the Monte Carlo method and Hoshen-Kopelman algorithm. With the assumption that both rim pore and rim grain can be represented by cube, pore distribution in the rim was simulated 3-dimensionally by the Monte Carlo method according to porosity and pore size distribution. Then, using the Hoshen-Kopelman algorithm, the fraction of open rim pores interlinked to the outer surface of a fuel pellet was derived as a function of rim porosity. The simulation showed that porosity of 24-25% is the threshold above which the number of rim pores forming release channels increases very rapidly. On the other hand, channels would not be formed if the porosity is less than about 23.5%. This is consistent with the observation that, for porosity less than 23.5%, almost no fission gas is released in the rim. However, once the rim porosity reaches beyond 25%, extensive open paths would be developed and considerable fission gas release would start in the rim.

Shelter Effect of Porous Fences on the Saltation of Sand Particles in an Atmospheric Boundary Layer (방풍펜스가 후방에 놓인 야적모래입자의 비산에 미치는 영향에 관한 연구)

  • Park, Ki-Chul;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1175-1184
    • /
    • 2000
  • Effects of porous wind fences on the wind erosion of particles from a triangular sand pile were investigated experimentally. The porous fence and sand pile were installed in a simulated atmospheric boundary layer. The mean velocity and turbulent intensity profiles measured at the sand pile location were well fitted to the atmospheric boundary layer over the open terrain. Flow visualization was carried out to investigate the motion of windblown sand particles qualitatively. In addition, the threshold velocity were measured using a light sensitive video camera with varying the particle size, fence porosity $\varepsilon$ and the height of sand pile. As a result, various types of particle motion were observed according to the fence porosity. The porous wind fence having porosity $\varepsilon$=30% was revealed to have the maximum threshold velocity, indicating good shelter effect for abating windblown dust particles. With increasing the sand particle diamter, the threshold velocity was also increased. When the height of sand pile is lower than the fence height, threshold velocity is enhanced.

Experimental Study on Saltation of Sand Particles Located behind Porous Wind Fences (바람에 의한 야적모래입자의 비산에 관한 실험적 연구)

  • Park, Ki-Chul;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.740-745
    • /
    • 2000
  • Effects of porous fences on the wind erosion of sand particles from a triangular pile were investigated experimentally. The porous fence and sand pile were installed in a simulated atmospheric boundary layer. The mean velocity and turbulent intensity profiles measured at the sand pile location were well fitted to the atmospheric boundary layer over the open terrain. Particle motion was visualized to see the motion of windblown sand particles qualitatively. In addition, the threshold velocity were measured using a light sensitive video camera with varying the fence porosity ${\varepsilon}$. As a result, various types of particle motion were observed according to the fence porosity. The porous wind fence having porosity ${\varepsilon}=30%$ was revealed to have the maximum threshold velocity, indicating good shelter effect for abating windblown dust particles.

  • PDF

Threshold burnup for recrystallization and model for rim porosity in the high burnup $UO_2$ fuel

  • Lee, Byung-Ho;Koo, Yang-Hyun;Sohn, Dong-Seong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.279-284
    • /
    • 1998
  • Applicability of the threshold burnup for rim formation was investigated as a function of temperature by Rest's model. The threshold burnup was the lowest in the intermediate temperature region, while on the other temperature regions the threshold burnup is higher. The rim porosity was predicted by the van der Waals equation based of the rim pore radius of 0.75${\mu}{\textrm}{m}$ and the overpressurization model on rim pores. The calculated centerline temperature is in good agreement with the measured temperature. However, more efforts seem to be necessary for the mechanistic model of the rim effect including rim growth with the fuel burnup.

  • PDF

Pore Characteristics of Porous Alumina Ceramics Fabricated from Boehmite Hydrosol and Alumina Particles (Boehmite 수화졸의 알루미나로 제조한 다공성 알루미나 세라믹스의 기공특성)

  • 오경영
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.547-555
    • /
    • 1996
  • Porous alumina ceramics were fabricated by pseudo-boehmite phydosol-gel process within/without commercial $\alpha$-alumina particles average 1 and 40 micron respectively. The pore characteristics of fired specimens were studied by the measurement of bulk density total porosity thyermal analysis pore volume pore distribution BET area XRD and SEM. with increasing of firing temperature pore volume and BET surface area were decreased and the average pore size was increased to approximately 146$\AA$ upto 80$0^{\circ}C$ by de-watering of [OH] and formation of $\alpha$-alumina. The fired relative density of the alumina-dispersed specimen with average 1 micron particle was increased with the amounts of dispersed particle by bimodal packing theory which is compared to the ones of specimen including of average 40 micron particle. It was confirmed that the percola-tion threshold in porous ceramics with coarser particle (40 micron) has formed between the transformed-alumina from hydrogel and dispersed-alumina of above 50 vol% particle and the total porosity was increased at the threshold point above.

  • PDF

Threshold Subsoil Bulk Density for Optimal Soil Physical Quality in Upland: Inferred Through Parameter Interactions and Crop Growth Inhibition

  • Cho, Hee-Rae;Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Sonn, Yeon-Kyu;Kim, Myeong-Sook;Choi, Seyeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.548-554
    • /
    • 2016
  • Optimal range of soil physical quality to enhance crop productivity or to improve environmental health is still in dispute for the upland soil. We hypothesized that the optimal range might be established by comparing soil physical parameters and their interactions inhibiting crop growth. The parameter identifying optimal range covered favorable conditions of aeration, permeability and root extension. To establish soil physical standard two experiments were conducted as follows; 1) investigating interactions of bulk density and aeration porosity in the laboratory test and 2) determining effects of soil compaction and deep & conventional tillage on physical properties and crop growth in the field test. The crops were Perilla frutescens, Zea mays L., Solanum tuberosum L. and Secale cereael. The saturated hydraulic conductivity, bulk density from the root depth, root growth and stem length were obtained. Higher bulk density showed lower aeration porosity and hydraulic conductivity, and finer texture had lower threshold bulk density at 10% aeration bulk density. Reduced crop growth by subsoil compaction was higher in silt clay loam compared to other textures. Loam soil had better physical improvement in deep rotary tillage plot. Combined with results of the present studies, the soil physical quality was possibly assessed by bulk density index. Threshold subsoil bulk density as the upper value were $1.55Mg\;m^{-3}$ in sandy loam, $1.50Mg\;m^{-3}$ in loam and $1.45Mg\;m^{-3}$ in silty clay loam for optimal soil physical quality in upland.

Distribution of Calcium Hydroxide at the ITZ between Steel and Concrete

  • Ann Ki-Yong;Kim Hong-Sam;Kim Yang-Bae;Moon Han-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.481-485
    • /
    • 2005
  • The present study examines the distribution of calcium hydroxide, unhydrated cement grain and porosity at the steel-concrete interface. The formation of calcium hydroxide has been confirmed by microscopic analysis using BSE images containing the ITZ between the steel and concrete. It was found that calcium hydroxide does not form a layer on the steel surface, different from the hypothesis that has been available in investigating the corrosion of steel in concrete, ranging from 5 to $10\%$ within the steel surface. Moreover, the high level of porosity at the ITZ was observed, accounting for $30\%$, which may reduce the buffering capacity of cement hydration products against a local fall in the pH. These findings may imply that the mole of ($Cl^-$) :($OH^-$) in pore solution as chloride threshold level lead to wrong judgement or to a wide range of values.

Damage Characteristics of Rocks by Uniaxial Compression and Cyclic Loading-Unloading Test (일축압축시험과 반복재하시험을 이용한 암석의 손상특성 분석)

  • Jeong, Gyn-Young;Jang, Hyun-Sic;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.149-163
    • /
    • 2021
  • Damage characteristics of granite, marble and sandstone whose properties were different were investigated by uniaxial compression test and cyclic loading-unloading test. Strength, elastic constants and damage threshold stresses were measured by uniaxial compression test and were compared with those measured by cyclic loading-unloading test. Average rock strengths measured by cyclic loading-unloading test were either lower than or similar with those measured by uniaxial compression test. Rocks with high strength and low porosity were more sensitive to fatigue than that with low strength and high porosity. Although permanent strains caused by cyclic loading-unloading were different according to rock types, they could be good indicators representing damage characteristics of rock. Damage threshold stress of granite and marble might be measured from stress-permanent strain curves. Acoustic emissions were measured during both tests and felicity ratios which represented damage characteristics of rocks were calculated. Felicity ratio of sandstone which was weak in strength and highly porous could not be calculated because of very few measurements of acoustic emissions. On the other hand, damage threshold could be predicted from felicity ratios of granite and marble which were brittle and low in porosity. The deformation behaviors and damage characteristics of rock mass could be investigated if additional tests for various rock types were performed.

Modelling of Thermal Conductivity for High Burnup $UO_2$ Fuel Retaining Rim Region

  • Lee, Byung-Ho;Koo, Yang-Hyun;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.201-210
    • /
    • 1997
  • A thermal conductivity correlation has been proposed which can be applied to high turnup fuel by considering both of thermal conductivity with turnup across fuel pellet and additional degradation at pellet rim due to very high porosity. In addition, a correlation has been developed that can estimate the porosity of rim region as a function of rim burnup under the assumptions that all the produced fission gases are retained in the in porosity and threshold pellet average burnup required for the formation of rim region is 40 MWD/㎏U. Rim width is correlated to rim burnup using measured data. For the RISO experimental data obtained at pellet average turnup of 43.5 MWD/㎏U for three linear heat generation rates of 30, 35 and 40 ㎾/m, radial temperature distributions ore calculated using the present correlation and compared with the measured ones. This comparison shows that the present correlation gives the best agreement with the measured data when it is combined with the HALDEN's correlation for thermal conductivity considering its degradation with burnup. Another comparison with the HALDEN's measured fuel centerline temperature as a function of burnup at 25 ㎾/m up to about 44 MWD/㎾U also suggest that the present correlation yields the best agreement when it is combined with the HALDEN's thermal conductivity.

  • PDF

Stable and Unstable Crack Growth in Chromium Pre-alloyed Steel

  • Gerosa, Riccardo;Rivolta, Barbara;Tavasci, Adriano;Silva, Giuseppe;Bergmark, Anders
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.138-139
    • /
    • 2006
  • Sintered steels are materials characterized by residual porosity, whose dimension and morphology strongly affect the fatigue crack growth behaviour of the material. Prismatic specimens were pressed at $7.0\;g/cm^3$ from Astaloy CrM powder and sintered varying the sintering temperature and the cooling rate. Optical observations allowed to evaluate the dimensions and the morphology of the porosity and the microstructural characteristics. Fatigue tests were performed to investigate the threshold zone and to calculate the Paris law. Moreover $K_{Ic}$ tests were performed to complete the investigation. Both on fatigue and $K_{Ic}$ samples a fractographic analysis was carried out to investigate the crack path and the fracture surface features. The results show that the Paris law crack growth exponent is around 6.0 for $1120^{\circ}C$ sintered and around 4.7 for $1250^{\circ}C$ sintered materials. The same dependence to process parameters is not found for $K_{Ith}$.

  • PDF