• Title/Summary/Keyword: threshold methods

Search Result 1,497, Processing Time 0.035 seconds

Understanding the Response Characteristics of X-ray Verification Film (X-선 Verification 필름의 반응 특성에 관한 연구)

  • Yeo Inhwan;Seong Jinsil;Chu Sung Sil;Kim Gwi Eon;Suh Chang Ok;Burch Sandra E.;Wang Chris K.
    • Radiation Oncology Journal
    • /
    • v.16 no.4
    • /
    • pp.505-515
    • /
    • 1998
  • Purpose : This study is intended to understand the sensitometric characteristics and the emulsion properties of the commercially available CEA TVS film in comparison with the Kodak X-Omat V film. Materials and Methods : For this purpose, we have formulated an analytic expression of the characteristic curves for x-ray film exposed to mixed radiation of electrons, photons, and visible light. This mathematical expression was developed based on reaction-rate and target-hit theories. Unlike previous expressions. it relates optical density to emulsion properties such as grain size and silver bromide content We have also developed a quantity which characterizes the film response to visible light relative to that to photons and electrons. This quantity could be expressed as a function of grain area. Thus, we have developed mathematical expressions and quantities with which the emulsion properties of the films can be revealed based on the sensitometric characteristics. Demonstrating the use of this analytical study, we exposed CEA and Kodak verification films to the mixed radiation of electrons, photons, and visible light, and interpreted the experimental results accordingly. Results : We have demonstrated that: (1) the saturation density increases as the silver bromide content increases, (2) the time required to reach the threshold dose (to which the film begins to respond) when films are exposed to visible light decreases as the grain size increases, and (3) the CEA film contains more silver bromide. whereas the Kodak film contains larger grains. These findings were supported by the data provided by the manufacturers afterward. Conclusion : This study presented an analytical and experimental basis for understanding the response of X-ray film with respect to the emulsion properties.

  • PDF

Quantification of Cerebrovascular Reserve Using Tc-99m HMPAO Brain SPECT and Lassen's Algorithm (Tc-99m HMPAO 뇌 SPECT와 Lassen 알고리즘을 이용한 뇌혈관 예비능의 정량화)

  • Kim, Kyeong-Min;Lee, Dong-Soo;Kim, Seok-Ki;Lee, Jae-Sung;Kang, Keon-Wook;Yeo, Jeong-Seok;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.4
    • /
    • pp.322-335
    • /
    • 2000
  • Purpose: For quantitative estimation of cerebrovascular reserve (CVR), we estimated the cerebral blood flow (CBF) using Lassen's nonlinearity correction algorithm and Tc-99m HMPAO brain SPECT images acquired with consecutive acquisition protocol. Using the values of CBF in basal and acetaBolamide (ACZ) stress states, CBF increase was calculated. Materials and Methods: In 9 normal subjects (age; $72{\pm}4$ years), brain SPECT was performed at basal and ACZ stress states consecutively after injection of 555 MBq and 1,110 MBq of Tc-99m HMPAO, respectively. Cerebellum was automatically extracted as reference region on basal SPECT image using threshold method. Assuming basal CBF of cerebellum as 55 ml/100g/min, CBF was calculated lot every pixel at basal states using Lassen's algorithm. Cerebellar blood flow at stress was estimated comparing counts of cerebellum at rest and ACZ stress and Lassen's algorithm. CBF of every pixel at ACZ stress state was calculated using Lassen's algorithm and ACZ cerebellar count. CVR was calculated by subtracting basal CBF from ACZ stress CBF for every pixel. The percent CVR was calculated by dividing CVR by basal CBF. The CBF and percentage CVR parametric images were generated. Results: The CBF and percentage CVR parametric images were obtained successfully in all the subjects. Global mean CBF were $49.6{\pm}5.5ml/100g/min\;and\;64.4{\pm}10.2ml/100g/min$ at basal and ACZ stress states, respectively. The increase of CBF at ACZ stress state was $14.7{\pm}9.6ml/100g/min$. The global mean percent CVR was 30.7% and was higher than the 13.8% calculated using count images. Conclusion: The blood flow at basal and ACZ stress states and cerebrovascular reserve were estimated using basal/ACZ Tc-99m-HMPAO SPECT images and Lassen's algorithm. Using these values, parametric images for blood flow and cerebrovascular reserve were generated.

  • PDF

Viral Load Dynamics After Symptomatic COVID-19 in Children With Underlying Malignancies During the Omicron Wave

  • Ye Ji Kim;Hyun Mi Kang;In Young Yoo;Jae Won Yoo;Seong Koo Kim;Jae Wook Lee;Dong Gun Lee;Nack-Gyun Chung;Yeon-Joon Park;Dae Chul Jeong;Bin Cho
    • Pediatric Infection and Vaccine
    • /
    • v.30 no.2
    • /
    • pp.73-83
    • /
    • 2023
  • Purpose: This study aimed to investigate the viral load dynamics in children with underlying malignancies diagnosed with symptomatic coronavirus disease 2019 (COVID-19). Methods: This was a retrospective longitudinal cohort study of patients <19 years old with underlying hemato-oncologic malignancies that were diagnosed with their first symptomatic severe acute respiratory syndrome coronavirus 2 polymerase chain reaction (PCR)-confirmed COVID-19 infection during March 1 to August 30, 2022. Review of electronic medical records and telephone surveys were undertaken to assess the clinical presentations and transmission route of the patients. Thresholds of negligible likelihood of infectious virus was defined as E gene reverse transcription (RT)-PCR cycle threshold (Ct) value ≥25. Results: During the 6-month study period, a total of 43 children with 44 episodes of COVID-19 were included. Of the 44 episodes, the median age of the patients included was 8 years old (interquartile range [IQR], 4.9-10.5), and the most common underlying disease was acute lymphoid leukemia (n=30, 68.2%), followed by patients post-hematopoietic stem cell transplantation (n=8, 18.2%). Majority of the patients had mild COVID-19 (n=32, 72.7%), and three patients (7.0%) had severe/critical COVID-19. Furthermore, 2.3% (n=1) died of COVID-19 associated acute respiratory distress syndrome. The largest percentage of the patients showed E gene RT-PCR Ct value ≥25 between 15-21 days (n=13, 39.4%), followed by 22-28 days (n=10, 30.3%). In 15.2% (n=5), E gene RT-PCR Ct value remained <25 beyond 28 days after initial positive PCR. Refractory malignancy status (β, 67.0; 95% confidence interval, 7.0-17.0; P=0.030) was significantly associated with prolonged duration of E gene RT-PCR <25. A patient with prolonged duration of E gene RT-PCR Ct value <25 was suspected to have infectivity shown by the transmission of the virus to his mother at day 86 after his initial positive test. Conclusions: Children that acquire symptomatic COVID-19 during refractory malignancy state are at a high risk for prolonged shedding warranting PCR-based transmission precautions in this cohort of patients.

Heavy concrete shielding properties for carbon therapy

  • Jin-Long Wang;Jiade J Lu;Da-Jun Ding;Wen-Hua Jiang;Ya-Dong Li;Rui Qiu;Hui Zhang;Xiao-Zhong Wang;Huo-Sheng Ruan;Yan-Bing Teng;Xiao-Guang Wu;Yun Zheng;Zi-Hao Zhao;Kai-Zhong Liao;Huan-Cheng Mai;Xiao-Dong Wang;Ke Peng;Wei Wang;Zhan Tang;Zhao-Yan Yu;Zhen Wu;Hong-Hu Song;Shuo-Yang Wei;Sen-Lin Mao;Jun Xu;Jing Tao;Min-Qiang Zhang;Xi-Qiang Xue;Ming Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2335-2347
    • /
    • 2023
  • As medical facilities are usually built at urban areas, special concrete aggregates and evaluation methods are needed to optimize the design of concrete walls by balancing density, thickness, material composition, cost, and other factors. Carbon treatment rooms require a high radiation shielding requirement, as the neutron yield from carbon therapy is much higher than the neutron yield of protons. In this case study, the maximum carbon energy is 430 MeV/u and the maximum current is 0.27 nA from a hybrid particle therapy system. Hospital or facility construction should consider this requirement to design a special heavy concrete. In this work, magnetite is adopted as the major aggregate. Density is determined mainly by the major aggregate content of magnetite, and a heavy concrete test block was constructed for structural tests. The compressive strength is 35.7 MPa. The density ranges from 3.65 g/cm3 to 4.14 g/cm3, and the iron mass content ranges from 53.78% to 60.38% from the 12 cored sample measurements. It was found that there is a linear relationship between density and iron content, and mixing impurities should be the major reason leading to the nonuniform element and density distribution. The effect of this nonuniformity on radiation shielding properties for a carbon treatment room is investigated by three groups of Monte Carlo simulations. Higher density dominates to reduce shielding thickness. However, a higher content of high-Z elements will weaken the shielding strength, especially at a lower dose rate threshold and vice versa. The weakened side effect of a high iron content on the shielding property is obvious at 2.5 µSv=h. Therefore, we should not blindly pursue high Z content in engineering. If the thickness is constrained to 2 m, then the density can be reduced to 3.3 g/cm3, which will save cost by reducing the magnetite composition with 50.44% iron content. If a higher density of 3.9 g/cm3 with 57.65% iron content is selected for construction, then the thickness of the wall can be reduced to 174.2 cm, which will save space for equipment installation.

Diagnostic Value of CYFRA 21-1 Measurement in Fine-Needle Aspiration Washouts for Detection of Axillary Recurrence in Postoperative Breast Cancer Patients (유방암 수술 후 액와림프절 재발 진단에 있어서의 미세침세척액 CYFRA 21-1의 진단적 가치)

  • So Yeon Won;Eun-Kyung Kim;Hee Jung Moon;Jung Hyun Yoon;Vivian Youngjean Park;Min Jung Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.1
    • /
    • pp.147-156
    • /
    • 2020
  • Purpose The objective of this study was to evaluate the diagnostic value and threshold levels of cytokeratin fragment 21-1 (CYFRA 21-1) in fine-needle aspiration (FNA) washouts for detection of lymph node (LN) recurrence in postoperative breast cancer patients. Materials and Methods FNA cytological assessments and CYFRA 21-1 measurement in FNA washouts were performed for 64 axillary LNs suspicious for recurrence in 64 post-operative breast cancer patients. Final diagnosis was made on the basis of FNA cytology and follow-up data over at least 2 years. The concentration of CYFRA 21-1 was compared between recurrent LNs and benign LNs. Diagnostic performance and cut-off value were evaluated using a receiver operating characteristic curve. Results Regardless of the non-diagnostic results, the median concentration of CYFRA 21-1 in recurrent LNs was significantly higher than that in benign LNs (p < 0.001). The optimal diagnostic cut-off value was 1.6 ng/mL. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of CYFRA 21-1 for LN recurrence were 90.9%, 100%, 100%, 98.1%, and 98.4%, respectively. Conclusion Measurement of CYFRA 21-1 concentration from ultrasound-guided FNA biopsy aspirates showed excellent diagnostic performance with a cut-off value of 1.6 ng/mL. These results indicate that measurement of CYFRA 21-1 concentration in FNA washouts is useful for the diagnosis of axillary LN recurrence in post-operative breast cancer patients.

Analysis of socio-demographic and dietary factors associated with fruit and vegetable consumption among Korean adolescents: use of data from the 7th and 8th Korea National Health and Nutrition Examination Survey (2016-2019) (한국 청소년의 과일 및 채소 섭취와 관련된 인구사회학적 특성 및 식생활 분석: 국민건강영양조사 제7-8기 (2016-2019) 자료 이용)

  • Bokyeong Yun;Seunghee Kye
    • Journal of Nutrition and Health
    • /
    • v.57 no.3
    • /
    • pp.292-306
    • /
    • 2024
  • Purpose: This study investigated fruit and vegetable intake and associated socio-demographic and dietary factors, and compared the nutritional intake according to the fruit and vegetable intake level among Korean adolescents. Methods: This study was conducted on 1,676 adolescents who participated in the 2016-2019 Korea National Health and Nutrition Examination Survey. The subjects were classified into four groups based on the fruit and vegetable intake recommendations in 2020 Dietary Reference Intakes for Koreans: Application (KDRIs Application): sufficient fruit intake (SF) group, sufficient vegetables intake (SV) group, sufficient fruit and vegetables intake (SFV) group, and not sufficient fruit and vegetable intake (NS) group The nutrient intake per day in each group was compared.. Logistic regression analysis was performed to examine the factors influencing fruit and vegetables intake. Results: In the sample of adolescents surveyed, only 1.40% met the recommended daily intake of fruits and vegetables, while 79.54% fell below the established threshold for adequate consumption. Female adolescents, those with fathers holding university degrees or above, and those who ate breakfast at least three times a week were likelier to have adequate fruit intake. Male adolescents and those from higher-income households were likelier to consume vegetables. Females, those who ate out daily, those from lower-income households, and those who understood food labels were likelier to have adequate fruit and vegetable intake. The daily nutrient intake and intake-to-requirement ratio significantly differed according to the fruit and vegetable intake groups. The NS and SF group had lower ratios for calcium and iron, while the NS group had the lowest vitamin A and C intake. By contrast, the SFV group met almost all daily nutrient requirements, except for calcium and vitamin A. Conclusion: This study highlights the need for nutrition education programs to encourage adolescents to consume adequate amounts of fruits and vegetables.

A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm (Word2Vec을 활용한 제품군별 시장규모 추정 방법에 관한 연구)

  • Jung, Ye Lim;Kim, Ji Hui;Yoo, Hyoung Sun
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.1-21
    • /
    • 2020
  • With the rapid development of artificial intelligence technology, various techniques have been developed to extract meaningful information from unstructured text data which constitutes a large portion of big data. Over the past decades, text mining technologies have been utilized in various industries for practical applications. In the field of business intelligence, it has been employed to discover new market and/or technology opportunities and support rational decision making of business participants. The market information such as market size, market growth rate, and market share is essential for setting companies' business strategies. There has been a continuous demand in various fields for specific product level-market information. However, the information has been generally provided at industry level or broad categories based on classification standards, making it difficult to obtain specific and proper information. In this regard, we propose a new methodology that can estimate the market sizes of product groups at more detailed levels than that of previously offered. We applied Word2Vec algorithm, a neural network based semantic word embedding model, to enable automatic market size estimation from individual companies' product information in a bottom-up manner. The overall process is as follows: First, the data related to product information is collected, refined, and restructured into suitable form for applying Word2Vec model. Next, the preprocessed data is embedded into vector space by Word2Vec and then the product groups are derived by extracting similar products names based on cosine similarity calculation. Finally, the sales data on the extracted products is summated to estimate the market size of the product groups. As an experimental data, text data of product names from Statistics Korea's microdata (345,103 cases) were mapped in multidimensional vector space by Word2Vec training. We performed parameters optimization for training and then applied vector dimension of 300 and window size of 15 as optimized parameters for further experiments. We employed index words of Korean Standard Industry Classification (KSIC) as a product name dataset to more efficiently cluster product groups. The product names which are similar to KSIC indexes were extracted based on cosine similarity. The market size of extracted products as one product category was calculated from individual companies' sales data. The market sizes of 11,654 specific product lines were automatically estimated by the proposed model. For the performance verification, the results were compared with actual market size of some items. The Pearson's correlation coefficient was 0.513. Our approach has several advantages differing from the previous studies. First, text mining and machine learning techniques were applied for the first time on market size estimation, overcoming the limitations of traditional sampling based- or multiple assumption required-methods. In addition, the level of market category can be easily and efficiently adjusted according to the purpose of information use by changing cosine similarity threshold. Furthermore, it has a high potential of practical applications since it can resolve unmet needs for detailed market size information in public and private sectors. Specifically, it can be utilized in technology evaluation and technology commercialization support program conducted by governmental institutions, as well as business strategies consulting and market analysis report publishing by private firms. The limitation of our study is that the presented model needs to be improved in terms of accuracy and reliability. The semantic-based word embedding module can be advanced by giving a proper order in the preprocessed dataset or by combining another algorithm such as Jaccard similarity with Word2Vec. Also, the methods of product group clustering can be changed to other types of unsupervised machine learning algorithm. Our group is currently working on subsequent studies and we expect that it can further improve the performance of the conceptually proposed basic model in this study.

Application of Support Vector Regression for Improving the Performance of the Emotion Prediction Model (감정예측모형의 성과개선을 위한 Support Vector Regression 응용)

  • Kim, Seongjin;Ryoo, Eunchung;Jung, Min Kyu;Kim, Jae Kyeong;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.185-202
    • /
    • 2012
  • .Since the value of information has been realized in the information society, the usage and collection of information has become important. A facial expression that contains thousands of information as an artistic painting can be described in thousands of words. Followed by the idea, there has recently been a number of attempts to provide customers and companies with an intelligent service, which enables the perception of human emotions through one's facial expressions. For example, MIT Media Lab, the leading organization in this research area, has developed the human emotion prediction model, and has applied their studies to the commercial business. In the academic area, a number of the conventional methods such as Multiple Regression Analysis (MRA) or Artificial Neural Networks (ANN) have been applied to predict human emotion in prior studies. However, MRA is generally criticized because of its low prediction accuracy. This is inevitable since MRA can only explain the linear relationship between the dependent variables and the independent variable. To mitigate the limitations of MRA, some studies like Jung and Kim (2012) have used ANN as the alternative, and they reported that ANN generated more accurate prediction than the statistical methods like MRA. However, it has also been criticized due to over fitting and the difficulty of the network design (e.g. setting the number of the layers and the number of the nodes in the hidden layers). Under this background, we propose a novel model using Support Vector Regression (SVR) in order to increase the prediction accuracy. SVR is an extensive version of Support Vector Machine (SVM) designated to solve the regression problems. The model produced by SVR only depends on a subset of the training data, because the cost function for building the model ignores any training data that is close (within a threshold ${\varepsilon}$) to the model prediction. Using SVR, we tried to build a model that can measure the level of arousal and valence from the facial features. To validate the usefulness of the proposed model, we collected the data of facial reactions when providing appropriate visual stimulating contents, and extracted the features from the data. Next, the steps of the preprocessing were taken to choose statistically significant variables. In total, 297 cases were used for the experiment. As the comparative models, we also applied MRA and ANN to the same data set. For SVR, we adopted '${\varepsilon}$-insensitive loss function', and 'grid search' technique to find the optimal values of the parameters like C, d, ${\sigma}^2$, and ${\varepsilon}$. In the case of ANN, we adopted a standard three-layer backpropagation network, which has a single hidden layer. The learning rate and momentum rate of ANN were set to 10%, and we used sigmoid function as the transfer function of hidden and output nodes. We performed the experiments repeatedly by varying the number of nodes in the hidden layer to n/2, n, 3n/2, and 2n, where n is the number of the input variables. The stopping condition for ANN was set to 50,000 learning events. And, we used MAE (Mean Absolute Error) as the measure for performance comparison. From the experiment, we found that SVR achieved the highest prediction accuracy for the hold-out data set compared to MRA and ANN. Regardless of the target variables (the level of arousal, or the level of positive / negative valence), SVR showed the best performance for the hold-out data set. ANN also outperformed MRA, however, it showed the considerably lower prediction accuracy than SVR for both target variables. The findings of our research are expected to be useful to the researchers or practitioners who are willing to build the models for recognizing human emotions.

A study on evaluation of the image with washed-out artifact after applying scatter limitation correction algorithm in PET/CT exam (PET/CT 검사에서 냉소 인공물 발생 시 산란 제한 보정 알고리즘 적용에 따른 영상 평가)

  • Ko, Hyun-Soo;Ryu, Jae-kwang
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.55-66
    • /
    • 2018
  • Purpose In PET/CT exam, washed-out artifact could occur due to severe motion of the patient and high specific activity, it results in lowering not only qualitative reading but also quantitative analysis. Scatter limitation correction by GE is an algorism to correct washed-out artifact and recover the images in PET scan. The purpose of this study is to measure the threshold of specific activity which can recovers to original uptake values on the image shown with washed-out artifact from phantom experiment and to compare the quantitative analysis of the clinical patient's data before and after correction. Materials and Methods PET and CT images were acquired in having no misalignment(D0) and in 1, 2, 3, 4 cm distance of misalignment(D1, D2, D3, D4) respectively, with 20 steps of each specific activity from 20 to 20,000 kBq/ml on $^{68}Ge$ cylinder phantom. Also, we measured the distance of misalignment of foley catheter line between CT and PET images, the specific activity which makes washed-out artifact, $SUV_{mean}$ of muscle in artifact slice and $SUV_{max}$ of lesion in artifact slice and $SUV_{max}$ of the other lesion out of artifact slice before and after correction respectively from 34 patients who underwent $^{18}F-FDG$ Fusion Whole Body PET/CT exam. SPSS 21 was used to analyze the difference in the SUV between before and after scatter limitation correction by paired t-test. Results In phantom experiment, $SUV_{mean}$ of $^{68}Ge$ cylinder decreased as specific activity of $^{18}F$ increased. $SUV_{mean}$ more and more decreased as the distance of misalignment between CT and PET more increased. On the other hand, the effect of correction increased as the distance more increased. From phantom experiments, there was no washed-out artifact below 50 kBq/ml and $SUV_{mean}$ was same from origin. On D0 and D1, $SUV_{mean}$ recovered to origin(0.95) below 120 kBq/ml when applying scatter limitation correction. On D2 and D3, $SUV_{mean}$ recovered to origin below 100 kBq/ml. On D4, $SUV_{mean}$ recovered to origin below 80 kBq/ml. From 34 clinical patient's data, the average distance of misalignment was 2.02 cm and the average specific activity which makes washed-out artifact was 490.15 kBq/ml. The average $SUV_{mean}$ of muscles and the average $SUV_{max}$ of lesions in artifact slice before and after the correction show a significant difference according to a paired t-test respectively(t=-13.805, p=0.000)(t=-2.851, p=0.012), but the average $SUV_{max}$ of lesions out of artifact slice show a no significant difference (t=-1.173, p=0.250). Conclusion Scatter limitation correction algorism by GE PET/CT scanner helps to correct washed-out artifact from motion of a patient or high specific activity and to recover the PET images. When we read the image occurred with washed-out artifact by measuring the distance of misalignment between CT and PET image, specific activity after applying scatter limitation algorism, we can analyze the images more accurately without repeating scan.

Correlation of Basal AMH & Ovarian Response in IVF Cycles; Predictive Value of AMH (과배란유도 시 혈중 AMH와 난소 반응성과의 상관관계; 예측 인자로서의 효용성)

  • Ahn, Young-Sun;Kim, Jin-Yeong;Cho, Yun-Jin;Kim, Min-Ji;Kim, Hye-Ok;Park, Chan-Woo;Song, In-Ok;Koong, Mi-Kyoung;Kang, Inn-Soo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.35 no.4
    • /
    • pp.309-317
    • /
    • 2008
  • Objectives: The aim of this study was to evaluate the usefulness of Anti-mullerian hormone (AMH) as a predictive marker for ovarian response and cycle outcome in IVF cycles. Methods: From Jan., to Aug., 2007, 111 patients undergoing IVF/ICSI stimulated by short or antagonist protocol were selected. On cycle day 3, basal serum AMH level and FSH level were measured. The correlation between basal serum AMH or FSH, and COH outcome was analyzed and IVF outcome was compared according to the AMH levels. To determine the threshold value of AMH for poor- and hyper-response, ROC curve was analyzed. Results: Serum AMH showed higher correlation coefficient (r=0.792, p<0.001) with the number of retrieved mature oocyte than serum FSH (r=-0.477, p<0.001). According to ovarian response, FSH and AMH leves showed significant differences among poor, normal, and hyperresponder. For predicting poor (${\leq}2$ oocytes) and hyperresponse (${\geq}17$ oocyets), AMH cut-off values were 0.5 ng/ml (the sensitivity 88.9% and the specificity 89.5%) and 2.5 ng/ml (sensitivity 85.7%, specificity 87.0%), respectively. According to the AMH level, patients were divided into 3 groups: low (${\leq}0.60\;ng/ml$), normal ($0.60{\sim}2.60\;ng/ml$), and high AMH (${\geq}2.60\;ng/ml$). The number of retrieved mature oocytes was significantly higher ($2.7{\pm}2.2$, $8.1{\pm}4.8$, $16.5{\pm}5.7$) and total gonadotropin dose was lower ($3530.5{\pm}1251.0$, $2957.1{\pm}1057.6$, and $2219.2{\pm}751.9\;IU$) in high AMH group (p<0.001). There was no significant difference in fertilization rates and pregnancy rates (23.8%, 34.0%, 37.5%) among the groups. Conclusions: Basal serum AMH level correlated better with the number of retrieved mature oocytes than FSH level, suggesting its usefulness for predicting ovarian response. However, IVF outcome was not significantly different according to the AMH levels. Serum AMH level presented good cut-off value for poor- or hyper-responders, therefore it could be useful in prediction of cycle cancellation, gonadotropin dose, and OHSS risk in IVF cycles.