• Title/Summary/Keyword: threshold approach

Search Result 511, Processing Time 0.03 seconds

Diamond-like Carbon Tribological Endurance using an Energetic Approach

  • Alkelae, Fathia;Jun, Tea-Sung
    • Tribology and Lubricants
    • /
    • v.37 no.5
    • /
    • pp.179-188
    • /
    • 2021
  • Reputed for their low friction coefficient and wear protection effect, diamond-like carbon (DLC) materials are considered amongst the most important lubricant coatings for tribological applications. In this framework, this investigation aims to elucidate the effect of a few operating parameters, such as applied stress and sliding amplitude on the friction lifetime of DLC coatings. Fretting wear tests are conducted using a 12.7 mm radius counterpart of 52100 steel balls slid against a substrate of the same material coated with a 2 ㎛ thickness DLC. Approximately, 5 to 57 N force is applied, generating a maximum Hertzian contact pressure of 430 to 662 MPa, corresponding to the applied force. The coefficient of friction (CoF) generates three regimes, first a running-in period regime, followed by a steady-state evolution regime, and finally a progressive increase of the CoF reaching the steel CoF value, as an indicator of reaching the substrate. To track the wear scenario, interrupted tests are performed with analysis combining scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), 3D profilometer and micro-Raman spectroscopy. The results show two endurance values: one characterizing the coating failure (Nc1), and the other (Nc2) indicating the friction failure which is situated where the CoF reaches a threshold value of μth = 0.3 in the third regime. The Archard energy density factor is used to determine the two endurance values (Nc1, Nc2). Based on this approach, a master curve is established delimitating both the coating and the friction endurances.

Load Balancing Approach to Enhance the Performance in Cloud Computing

  • Rassan, Iehab AL;Alarif, Noof
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.158-170
    • /
    • 2021
  • Virtualization technologies are being adopted and broadly utilized in many fields and at different levels. In cloud computing, achieving load balancing across large distributed virtual machines is considered a complex optimization problem with an essential importance in cloud computing systems and data centers as the overloading or underloading of tasks on VMs may cause multiple issues in the cloud system like longer execution time, machine failure, high power consumption, etc. Therefore, load balancing mechanism is an important aspect in cloud computing that assist in overcoming different performance issues. In this research, we propose a new approach that combines the advantages of different task allocation algorithms like Round robin algorithm, and Random allocation with different threshold techniques like the VM utilization and the number of allocation counts using least connection mechanism. We performed extensive simulations and experiments that augment different scheduling policies to overcome the resource utilization problem without compromising other performance measures like makespan and execution time of the tasks. The proposed system provided better results compared to the original round robin as it takes into consideration the dynamic state of the system.

Anomaly Detection via Pattern Dictionary Method and Atypicality in Application (패턴사전과 비정형성을 통한 이상치 탐지방법 적용)

  • Sehong Oh;Jongsung Park;Youngsam Yoon
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.481-486
    • /
    • 2023
  • Anomaly detection holds paramount significance across diverse fields, encompassing fraud detection, risk mitigation, and sensor evaluation tests. Its pertinence extends notably to the military, particularly within the Warrior Platform, a comprehensive combat equipment system with wearable sensors. Hence, we propose a data-compression-based anomaly detection approach tailored to unlabeled time series and sequence data. This method entailed the construction of two distinctive features, typicality and atypicality, to discern anomalies effectively. The typicality of a test sequence was determined by evaluating the compression efficacy achieved through the pattern dictionary. This dictionary was established based on the frequency of all patterns identified in a training sequence generated for each sensor within Warrior Platform. The resulting typicality served as an anomaly score, facilitating the identification of anomalous data using a predetermined threshold. To improve the performance of the pattern dictionary method, we leveraged atypicality to discern sequences that could undergo compression independently without relying on the pattern dictionary. Consequently, our refined approach integrated both typicality and atypicality, augmenting the effectiveness of the pattern dictionary method. Our proposed method exhibited heightened capability in detecting a spectrum of unpredictable anomalies, fortifying the stability of wearable sensors prevalent in military equipment, including the Army TIGER 4.0 system.

Feature Variance and Adaptive classifier for Efficient Face Recognition (효과적인 얼굴 인식을 위한 특징 분포 및 적응적 인식기)

  • Dawadi, Pankaj Raj;Nam, Mi Young;Rhee, Phill Kyu
    • Annual Conference of KIPS
    • /
    • 2007.11a
    • /
    • pp.34-37
    • /
    • 2007
  • Face recognition is still a challenging problem in pattern recognition field which is affected by different factors such as facial expression, illumination, pose etc. The facial feature such as eyes, nose, and mouth constitute a complete face. Mouth feature of face is under the undesirable effect of facial expression as many factors contribute the low performance. We proposed a new approach for face recognition under facial expression applying two cascaded classifiers to improve recognition rate. All facial expression images are treated by general purpose classifier at first stage. All rejected images (applying threshold) are used for adaptation using GA for improvement in recognition rate. We apply Gabor Wavelet as a general classifier and Gabor wavelet with Genetic Algorithm for adaptation under expression variance to solve this issue. We have designed, implemented and demonstrated our proposed approach addressing this issue. FERET face image dataset have been chosen for training and testing and we have achieved a very good success.

Performance Analysis of Top-K High Utility Pattern Mining Methods (상위 K 하이 유틸리티 패턴 마이닝 기법 성능분석)

  • Ryang, Heungmo;Yun, Unil;Kim, Chulhong
    • Journal of Internet Computing and Services
    • /
    • v.16 no.6
    • /
    • pp.89-95
    • /
    • 2015
  • Traditional frequent pattern mining discovers valid patterns with no smaller frequency than a user-defined minimum threshold from databases. In this framework, an enormous number of patterns may be extracted by a too low threshold, which makes result analysis difficult, and a too high one may generate no valid pattern. Setting an appropriate threshold is not an easy task since it requires the prior knowledge for its domain. Therefore, a pattern mining approach that is not based on the domain knowledge became needed due to inability of the framework to predict and control mining results precisely according to the given threshold. Top-k frequent pattern mining was proposed to solve the problem, and it mines top-k important patterns without any threshold setting. Through this method, users can find patterns from ones with the highest frequency to ones with the k-th highest frequency regardless of databases. In this paper, we provide knowledge both on frequent and top-k pattern mining. Although top-k frequent pattern mining extracts top-k significant patterns without the setting, it cannot consider both item quantities in transactions and relative importance of items in databases, and this is why the method cannot meet requirements of many real-world applications. That is, patterns with low frequency can be meaningful, and vice versa, in the applications. High utility pattern mining was proposed to reflect the characteristics of non-binary databases and requires a minimum threshold. Recently, top-k high utility pattern mining has been developed, through which users can mine the desired number of high utility patterns without the prior knowledge. In this paper, we analyze two algorithms related to top-k high utility pattern mining in detail. We also conduct various experiments for the algorithms on real datasets and study improvement point and development direction of top-k high utility pattern mining through performance analysis with respect to the experimental results.

Voice Activity Detection based on Adaptive Band-Partitioning using the Likelihood Ratio (우도비를 이용한 적응 밴드 분할 기반의 음성 검출기)

  • Kim, Sang-Kyun;Shim, Hyeon-Min;Lee, Sangmin
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.9
    • /
    • pp.1064-1069
    • /
    • 2014
  • In this paper, we propose a novel approach to improve the performance of a voice activity detection(VAD) which is based on the adaptive band-partitioning with the likelihood ratio(LR). The previous method based on the adaptive band-partitioning use the weights that are derived from the variance of the spectral. In our VAD algorithm, the weights are derived from LR, and then the weights are incorporated with the entropy. The proposed algorithm discriminates the voice activity by comparing the weighted entropy with the adaptive threshold. Experimental results show that the proposed algorithm yields better results compared to the conventional VAD algorithms. Especially, the proposed algorithm shows superior improvement in non-stationary noise environments.

Robust Multithreaded Object Tracker through Occlusions for Spatial Augmented Reality

  • Lee, Ahyun;Jang, Insung
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.246-256
    • /
    • 2018
  • A spatial augmented reality (SAR) system enables a virtual image to be projected onto the surface of a real-world object and the user to intuitively control the image using a tangible interface. However, occlusions frequently occur, such as a sudden change in the lighting environment or the generation of obstacles. We propose a robust object tracker based on a multithreaded system, which can track an object robustly through occlusions. Our multithreaded tracker is divided into two threads: the detection thread detects distinctive features in a frame-to-frame manner, and the tracking thread tracks features periodically using an optical-flow-based tracking method. Consequently, although the speed of the detection thread is considerably slow, we achieve real-time performance owing to the multithreaded configuration. Moreover, the proposed outlier filtering automatically updates a random sample consensus distance threshold for eliminating outliers according to environmental changes. Experimental results show that our approach tracks an object robustly in real-time in an SAR environment where there are frequent occlusions occurring from augmented projection images.

Shape Preserving Contrast Enhancement

  • Hwang Jae Ho
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.867-871
    • /
    • 2004
  • In this paper, a new analytic approach for shape preserving contrast enhancement is presented. Contrast enhancement is achieved by means of segmental histogram stretching modification which preserves the given image shape, not distorting the original shape. After global stretching, the image is partitioned into several level-sets according to threshold condition. The image information of each level-set is represented as typical value based on grouped differential values. The basic property is modified into common local schemes, thereby introducing the enhanced effect through extreme discrimination between subsets. The scheme is based on stretching the histogram of subsets in which the intensity gray levels between connected pixels are approximately same In spite of histogram widening, stretched by local image information, it neither creates nor destroys the original image, thereby preserving image shape and enhancing the contrast. By designing local histogram stretching operations, we can preserve the original shape of level-sets of the image, and also enhance the global intensity. Thus it can hold the main properties of both global and local image schemes, which leads to versatile applications in the field of digital epigraphy.

  • PDF

A Novel Method for Hand Posture Recognition Based on Depth Information Descriptor

  • Xu, Wenkai;Lee, Eung-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.763-774
    • /
    • 2015
  • Hand posture recognition has been a wide region of applications in Human Computer Interaction and Computer Vision for many years. The problem arises mainly due to the high dexterity of hand and self-occlusions created in the limited view of the camera or illumination variations. To remedy these problems, a hand posture recognition method using 3-D point cloud is proposed to explicitly utilize 3-D information from depth maps in this paper. Firstly, hand region is segmented by a set of depth threshold. Next, hand image normalization will be performed to ensure that the extracted feature descriptors are scale and rotation invariant. By robustly coding and pooling 3-D facets, the proposed descriptor can effectively represent the various hand postures. After that, SVM with Gaussian kernel function is used to address the issue of posture recognition. Experimental results based on posture dataset captured by Kinect sensor (from 1 to 10) demonstrate the effectiveness of the proposed approach and the average recognition rate of our method is over 96%.

A Study on M / M (a, b ; ${\mu}_k$) / 1 Batch Service Queueing Model (M/M(a, b ; ${\mu}_k$)/1 배치 서비스 대기모델에 대한 연구)

  • Lee, Hwa-Ki;Chung, Kyung-Il
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.3
    • /
    • pp.345-356
    • /
    • 1995
  • The aim of this paper is to analyze the batch service queueing model M/M(a, b ; ${\mu}_k/1$) under general bulk service rule with mean service rate ${\mu}_k$ for a batch of k units, where $a{\leq}k{\leq}b$. This queueing model consists of the two-dimensional state space so that it is characterized by two-dimensional state Markov process. The steady-state solution and performane measure of this process are derived by using Matrix Geometric method. Meanwhile, a new approach is suggested to calculate the two-dimensional traffic density R which is used to obtain the steady-state solution. In addition, to determine the optimal service initiation threshold a, a decision model of this queueing system is developed evaluating cost of service per batch and cost of waiting per customer. In a job order production system, the decision-making procedure presented in this paper can be applicable to determining when production should be started.

  • PDF