• Title/Summary/Keyword: three-step fermented soybeans

Search Result 4, Processing Time 0.016 seconds

New Fermentation Technique for Complete Digestion of Soybean Protein

  • Lee, Jeong-Ok;Park, Mi-Hwa;Choi, Yung-Hyun;Ha, Yeong-Lae;Ryu, Chung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1904-1907
    • /
    • 2007
  • The aim of this study was to develop a new fermentation method in order to improve the digestion of soybean protein, and to promote normal fermentation of soybean. A proximate composition, such as moisture, pH, and reducing sugar, of fermented soybeans by the new fermentation was similar to those of controls. Neutral protease activity, the most important factor for fermented soybean products, was the highest, having about 636 Dig at 54 h fermentation. The content of total free amino acid was almost 3-18 times higher than controls. The three-step fermented soybeans can be used as a functional food ingredient for human consumption, with higher protein digestibility.

Inhibition of Phorbol 12-myristate-13-acetate Induced Cyclooxygenase-2 Activity by Three-step Fermented Soybeans (PMA에 의해 유도된 cycooxygenase-2 활성에 대한 새로운 발효법에 의한 대두산물의 억제 효능)

  • Park, Cheol;Lee, Jeong-Ok;Ryu, Chung-Ho;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.18 no.2
    • /
    • pp.180-186
    • /
    • 2008
  • In this study, we examined the effects of the fermented soybeans by Bacillus subtilis (FSB) and the novel three-step fermented soybeans (TFS) on the expression and activity of COX-2 in human leukemic U937 cell model. Treatment of phorbol 12-myristate 13-acetate (PMA) significantly induced pro-inflammatory mediators such as COX-2 expression and prostaglandin $E_2\;(PGE_2)$ production, whereas the levels of COX-1 remained unchanged. However, pre-treatment with FSB and TFS significantly attenuated the PMA-induced COX-2 protein as well as mRNA, which was associated with inhibition of $PGE_2$ production. Moreover, TFS exerts a much better inhibitory activity than FSB against PMA-induced activation of COX-2 and production of $PGE_2$ in U937 cells. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-inflammatory activity of FSB and TFS.

Preparation Method of meju by Three Step Fermentation (3단 발효에 의한 메주 제조방법)

  • Kim, Ig-Jo;Lee, Jeong-Ok;Park, Mi-Hwa;Shon, Dong-Hwa;Ha, Yeong-Lae;Ryu, Chung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.536-539
    • /
    • 2002
  • This study was investigated for the preparation method of meju by three step fermentation. The steamed soybeans were fermented with nisin-producing Lactococcus lactis subsp. lactis IFO12007 to inhibit the growth of odor-producing Bacilli and promote of normal fermentation of meju. The lactie-fermented soybeans were further fermented with Aspergillus oryzae and Bacillus subtilis. The produced meju by this method showed 54%moisture content and pH 7.0, respectively. The three step fermented meju was soaked in 20% (w/v) brine at $25^{\circ}C$ for 90days. After 30 days, the contents of total free amino acids revealed 4,015 mg% which were higher $3{\sim}5$ times than controls. Among the detected free amino acids, the contents of glutamic acid and leucine showed 925 mg% and 380mg%, respectively. Therefore, the new method of producing meju would be an excellent alternative to improve the quality of soybean fermented food, such as doenjang and kanjang.

Reduction of Allergic Potential of Meju by Three Step Fermentation (3단계 발효에 의한 콩 알레르기성의 저하)

  • Ryu, Chung-Ho;Lee, Jeong-Ok;Son, Dae-Yeul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.8
    • /
    • pp.1066-1071
    • /
    • 2012
  • In this study we investigated the change in antigenicity and allergenicity of Meju, a traditional Korean soybean product, by fermentation via 3 different microorganisms. The steamed soybeans were fermented with Lactococcus lactis subsp. lactis and/or Aspergillus oryzae and/or Bacillus subtilis. Proteins in soybean were degraded after fermentation. Antigenicity or allergenicity were analysed by immunoblotting and ELISA using soybean protein-specific polyclonal antibodies or soybean allergic patient sera. The best degradation was achieved by three step fermentation using nisin-producing Lactococcus lactis subsp. lactis IFO12007, A. oryzae and B. subtilis. Allergenicity and antigenicity were also starkly reduced after three step fermentation. The three-step fermentation method developed in our lab suggests an excellent alternative to reduce the allergenicity of soybeans.