• 제목/요약/키워드: three-point bending

검색결과 488건 처리시간 0.024초

도재용착주조관용 비귀금속 합금의 사전 열처리가 도재-금속의 결합 강도에 미치는 효과 (The effect of oxidation heat treatment on porcelain to metal bond strength)

  • 김치영;남상용
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 춘계학술대회
    • /
    • pp.43-46
    • /
    • 1997
  • The interfacial bond strength and microstructural analysis of pre-heat treated porcelain-fused-metal (PFM) were investigated using a mechanical three-point bending tester and scanning electron microscope(SEM). Four kinds of heat treated samples were prepared as follows; A: heating $1200^{\circ}F\rightarrow1600^{\circ}F$, holding 1min, reheating $\rightarrow1850^{\circ}F$, hold 3min under vacuum, B: heating $1200^{\circ}F\rightarrow1600^{\circ}F$ holding 1min, reheating $\rightarrow1850^{\circ}F$ under vacuum condition, C: heating $1200^{\circ}F\rightarrow1600^{\circ}F$, holding 1min, reheating $\rightarrow1850^{\circ}F$, holding 3min in the air, repeat same heat treatment process under vacuum condition, D: heating $1200^{\circ}F\rightarrow1600^{\circ}F$, holding 1min, reheating $\rightarrow1850^{\circ}F$, holding 1min in the air. The three-point bending test results shows that the interfacial bond strength of specimen B and C were higher than that of A and B. The SEM study reveals that Specimen C shows the highest surface density.

  • PDF

불소섭취에 따른 백서 대퇴골의 파절특성에 관한 Acoustic Emission 연구 (ACOUSTIC EMISSION CHARACTERISTIC OF THE RAT FEMUR AFTER ADMINISTRATION OF SODIUM FLUORIDE)

  • 송근배;이영은;김혜영;이상한
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제28권1호
    • /
    • pp.16-23
    • /
    • 2002
  • To understand the micro-mechanical changes and the effects of the fluoride on rat's femur after administration of sodium fluoride, the three-point bending test, acoustic emission analysis during the three-point bending test and scanning electron microscopy were performed. The obtained results were as follows: 1. Bone strength increased in the rats given 1, 5, 10 and 20 ppm of fluoride but, there were no statistical significances (p>0.05). 2. With increasing the concentration of fluoride, most AE events released rapidly just before the maximum load and smaller events were recorded than the control group's. The average of cumulative AE event counts until maximum load of the femur in 20 ppm group were significantly small with respect to the control group's (p<0.05). 3. Fracture surfaces were well coincide with the results of acoustic emission behavior. Analyses of fracture surfaces indicated that, consistent with its the highest load, rat femur in 20 ppm fluoride group displays the roughest surface.

Detection of Delamination Crack for Polymer Matrix Composites with Carbon Fiber by Electric Potential Method

  • Shin, Soon-Gi
    • 한국재료학회지
    • /
    • 제23권2호
    • /
    • pp.149-153
    • /
    • 2013
  • Delamination crack detection is very important for improving the structural reliability of laminated composite structures. This requires real-time delamination detection technologies. For composite laminates that are reinforced with carbon fiber, an electrical potential method uses carbon fiber for reinforcements and sensors at the same time. The use of carbon fiber for sensors does not need to consider the strength reduction of smart structures induced by imbedding sensors into the structures. With carbon fiber reinforced (CF/) epoxy matrix composites, it had been proved that the delamination crack was detected experimentally. In the present study, therefore, similar experiments were conducted to prove the applicability of the method for delamination crack detection of CF/polyetherethereketone matrix composite laminates. Mode I and mode II delamination tests with artificial cracks were conducted, and three point bending tests without artificial cracks were conducted. This study experimentally proves the applicability of the method for detection of delamination cracks. CF/polyetherethereketone material has strong electric resistance anisotropy. For CF/polyetherethereketone matrix composites, a carbon fiber network is constructed, and the network is broken by propagation of delamination cracks. This causes a change in the electric resistance of CF/polyetherethereketone matrix composites. Using three point bending specimens, delamination cracks generated without artificial initial cracks is proved to be detectable using the electric potential method: This method successfully detected delamination cracks.

Mix Design Nomogram을 이용한 콘크리트 파괴에너지 예측 (Prediction of Concrete Fracture Energy using Mix Design Nomogram)

  • 강성후;박선준;정철오
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권3호
    • /
    • pp.133-142
    • /
    • 2006
  • 본 연구에서는 레미콘 제품에 Mix Design Nomogram을 적용하여 배합변수에 따른 파괴에너지 예측뿐만 아니라 파괴에너지에 따른 배합변수 예측을 가능하도록 하는데 그 목적이 있다. Mix Design Nomogram 작성을 위한 실험은 레미콘 생산회사의 실제 시방배합표를 사용하였으며, RILEM 50-FMC 위원회에서 제안한 3점 휨 실험을 실시하였다. 그 결과, 레미콘 제품에 파괴에너지가 예측 가능한 Mix Design Nomogram의 적용 가능성을 확인하였으며, 이를 이용한 프로그램 개발로 레미콘 배합설계 자동화를 위한 가능성을 확인하였다.

Behaviors of novel sandwich composite beams with normal weight concrete

  • Yan, Jia-Bao;Dong, Xin;Wang, Tao
    • Steel and Composite Structures
    • /
    • 제38권5호
    • /
    • pp.599-615
    • /
    • 2021
  • The ultimate strength behaviour of sandwich composite beams with J-hooks and normal weight concrete (SCSSBJNs) are studied through two-point loading tests on ten full-scale SCSSBJNs. The test results show that the SCSSBJN with different parameters under two-point loads exhibits three types of failure modes, i.e., flexure, shear, and combined shear and flexure mode. SCSSBJN failed in different failure modes exhibits different load-deflection behaviours, and the main difference of these three types of behaviours exist in their last working stages. The influences of thickness of steel faceplate, shear span ratio, concrete core strength, and spacing of J-hooks on structural behaviours of SCSSBJN are discussed and analysed. These test results show that the failure mode of SCSSBJN was sensitive to the thickness of steel faceplate, shear span ratio, and concrete core strength. Theoretical models are developed to estimate the cracking, yielding, and ultimate bending resistance of SCSSBJN as well as its transverse cross-sectional shear resistance. The validations of predictions by these theoretical models proved that they are capable of estimating strengths of novel SCSSBJNs.

Experimental behavior assessment of short, randomly-oriented glass-fiber composite pipes

  • Salar Rasti;Hossein Showkati;Borhan Madroumi Aghbashi;Soheil Nejati Ozani;Tadeh Zirakian
    • Steel and Composite Structures
    • /
    • 제47권6호
    • /
    • pp.679-691
    • /
    • 2023
  • The application of short, fiber-reinforced polymer composite pipes has been increasing rapidly. A comprehensive review of the prior research reveals that the majority of the previously-reported studies have been conducted on the filament-wound composite pipes, and fewer studies have been reported on the mechanical behavior of short, randomly-oriented fiber composite pipes. On this basis, the main objective of this research endeavor is to investigate the mechanical behavior and failure modes of short, randomly-oriented glass-fiber composite pipes under three-point bending tests. To this end, an experimental study is performed in order to explore the load-bearing capacity, failure mechanism, and deformation performance of such pipes. Fourteen properly-instrumented composite pipe specimens with different diameters, thicknesses, lengths, and nominal pressures have been tested and also simulated using the finite element approach for verification purposes. This study demonstrates the effectiveness of the diameter-to-thickness ratio, length-to-diameter ratio, and nominal pressure on the mechanical behavior and deformation performance of short, randomly-oriented glass-fiber composite pipes.

Experimental and numerical study on energy absorption of lattice-core sandwich beam

  • Taghipoor, Hossein;Noori, Mohammad Damghani
    • Steel and Composite Structures
    • /
    • 제27권2호
    • /
    • pp.135-147
    • /
    • 2018
  • Quasi-static three-point bending tests on sandwich beams with expanded metal sheets as core were conducted. Relationships between the force and displacement at the mid-span of the sandwich beams were obtained from the experiments. Numerical simulations were carried out using ABAQUS/EXPLCIT and the results were thoroughly compared with the experimental results. A parametric analysis was performed using a Box-Behnken design (BBD) for the design of experiments (DOE) techniques and a finite element modeling. Then, the influence of the core layers number, size of the cell and, thickness of the substrates was investigated. The results showed that the increase in the size of the expanded metal cell in a reasonable range was required to improve the performance of the structure under bending collapse. It was found that core layers number and size of the cell was key factors governing the quasi-static response of the sandwich beams with lattice cores.

고온.고습 환경에서 CFRP 적층재의 충격손상와 잔류강도 (Impact Damages and Residual Strength of CFRP Laminates under the Hygrothermal Environment)

  • 정종안;양인영
    • 대한기계학회논문집A
    • /
    • 제20권12호
    • /
    • pp.3748-3758
    • /
    • 1996
  • This study is to investigate experimentally relationships between the impact energy and moisture absorption characteristies vs.the residual bending strength with the variation of stacking seqences. When Carbon-fiber reinforced plastics(CFRP) impact-induced laminates are subjected to the high temperatures and hygrothermal effects, it is found that what CFRP laminates are impacted by a steel ball (5 mm in diametar) ; thus, the generated delamination is observed by the ultrasonic microscope. And the residual bending strength is evaluated by a three-point bending test. Also, a thermostat is used in test with the unimpacted and impacted specimens for the moisture experimentaiton. The percision electro lever scles is used to measure the moisture content(1/10, 000g).

Effect of nonlocal-nonsingular Fractional Moore-Gibson-Thompson theory in semiconductor cylinder

  • Iqbal Kaur;Kulvinder Singh
    • Advances in nano research
    • /
    • 제15권4호
    • /
    • pp.305-313
    • /
    • 2023
  • This study is aimed to investigate the electrically conductive properties of epoxy nanocomposites exposed to an acidic environment under various mechanical loads. For simultaneous assessment of the acidic environment and mechanical load on the electrical conductivity of the samples, the samples with and without carbon nanotubes were exposed to the acidic environment under three different loading conditions for 20 days. Then, the aged samples' strength and flexural stiffness degradation under crude oil and bending stress were measured using a three-point flexural test. The aged samples in the acidic environment and under 80 percent of their intact ultimate strength revealed a 9% and 26% reduction of their electrical conductivity for samples with and without CNTs, respectively. The presence of nanoparticles declined flexural stiffness by about 16.39%. Scanning electron microscopy (SEM) images of the specimen were used to evaluate the dispersion quality of CNTs. The results of this study can be exploited in constructing conductive composite electrodes to be used in petroleum environments such as crude oil electrostatic tanks.

Effect of the crude oil environment on the electrical conductivity of the epoxy nanocomposites

  • Seyed Morteza Razavi;Soroush Azhdari;Fathollah Taheri-Behrooz
    • Advances in nano research
    • /
    • 제15권4호
    • /
    • pp.285-294
    • /
    • 2023
  • This study is aimed to investigate the electrically conductive properties of epoxy nanocomposites exposed to an acidic environment under various mechanical loads. For simultaneous assessment of the acidic environment and mechanical load on the electrical conductivity of the samples, the samples with and without carbon nanotubes were exposed to the acidic environment under three different loading conditions for 20 days. Then, the aged samples' strength and flexural stiffness degradation under crude oil and bending stress were measured using a three-point flexural test. The aged samples in the acidic environment and under 80 percent of their intact ultimate strength revealed a 9% and 26% reduction of their electrical conductivity for samples with and without CNTs, respectively. The presence of nanoparticles declined flexural stiffness by about 16.39%. Scanning electron microscopy (SEM) images of the specimen were used to evaluate the dispersion quality of CNTs. The results of this study can be exploited in constructing conductive composite electrodes to be used in petroleum environments such as crude oil electrostatic tanks.