• Title/Summary/Keyword: three-phase lags

Search Result 15, Processing Time 0.021 seconds

Fractional order generalized thermoelastic study in orthotropic medium of type GN-III

  • Lata, Parveen;Zakhmi, Himanshi
    • Geomechanics and Engineering
    • /
    • v.19 no.4
    • /
    • pp.295-305
    • /
    • 2019
  • The present paper is concerned with the investigation of disturbances in orthotropic thermoelastic medium by using fractional order heat conduction equation with three phase lags due to thermomechanical sources. Laplace and Fourier transform techniques are used to solve the problem. The expressions for displacement components, stress components and temperature change are derived in transformed domain and further in physical domain using numerical inversion techniques. The effect of fractional parameter based on its conductivity i.e., ($0<{\alpha}<1$ for weak, ${\alpha}=1$ for normal, $1<{\alpha}{\leq}2$ for strong conductivity) is depicted graphically on various components.

Cross-Correlation of Oscillations in A Fragmented Sunspot

  • Lee, Kyeore;Chae, Jongchul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.45.3-46
    • /
    • 2018
  • Oscillations in a sunspot are easily detected through the Doppler velocity observation. Although the sunspot oscillations look erratic, the wavelet analysis show that they consist of successive wave packets which have strong power near three or five minutes. Previous studies found that 3-min oscillation at the chromosphere is a visual pattern of upward propagating acoustic waves along the magnetic field lines. Resent multi-height observations help this like vertical study, however, we also focus on horizontal facet to extend three dimensional understand of sunspot waves. So, we investigate a fragmented sunspot expected to have complex wave profiles according to the positions in the sunspot observed by the Fast Imaging Solar Spectrograph. We choose 4 points at different umbral cores as sampling positions to determine coherence of oscillations. The sets of cross-correlation with three and five minutes bandpass filters during a single wave packet reveal interesting results. Na I line show weak correlations with some lags, but Fe I and Ni I have strong correlations with no phase difference over the sunspots. It is more remarkable at Ni I line with 3-min bandpass that all sets of cross-correlation look like the autocorrelation. We can interpret this as sunspot oscillations occur spontaneously over a sunspot at photosphere but not at chromosphere. It implies a larger or deeper origin of 3-min sunspot oscillation.

  • PDF

Seasonal Variation of Heat Content in the Neighbouring Seas of Korea (韓國 周邊 海洋 貯熱量의 秀節的 變動)

  • Gang, Yong-Gyun
    • 한국해양학회지
    • /
    • v.20 no.3
    • /
    • pp.1-5
    • /
    • 1985
  • Seasonal variations of heat content in the neighbouring seas of Korea are estimated from the bimonthly normals of seawater temperature in the upper 300m for 15 years (1961~1975) at 192 stations. The heat is seasonally stored mainly in the upper 100m layer in the East Sea and in the whole water column in the West and South Seas of Korea. The annual range of heat content changes in the West Sea is almost the same as that in the East Sea. The annual phase of heat content variation lags behind that of sea surface temperature variation by one to three months. Due to the seasonal advections of heat by currents and winds, the annual amplitude of heat storage rate in the neighbouring seas of Korea is much larger than that of incoming radiation.

  • PDF

Structure and Variation of Tidal Flat Temperature in Gomso Bay, West Coast of Korea (서해안 곰소만 갯벌 온도의 구조 및 변화)

  • Lee, Sang-Ho;Cho, Yang-Ki;You, Kwang-Woo;Kim, Young-Gon;Choi, Hyun-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.100-112
    • /
    • 2005
  • Soil temperature was measured from the surface to 40 cm depth at three stations with different heights in tidal flat of Gomso Bay, west coast of Korea, for one month in every season 2004 to examine the thermal structure and the variation. Mean temperature in surface layer was higher in summer and lower in winter than in lower layer, reflecting the seasonal variation of vertically propagating structure of temperature by heating and cooling from the tidal flat surface. Standard deviation of temperature decreased from the surface to lower layer. Periodic variations of solar radiation energy and tide mainly caused short term variation of soil temperature, which was also intermittently influenced by precipitation and wind. Time series analysis showed the power spectral energy peaks at the periods of 24, 12 and 8 hours, and the strongest peak appeared at 24 hour period. These peaks can be interpreted as temperature waves forced by variations of solar radiation, diurnal tide and interaction of both variations, respectively. EOF analysis showed that the first and the second modes resolved 96% of variation of vertical temperature structure. The first mode was interpreted as the heating antl cooling from tidal flat surface and the second mode as the effect of phase lag produced by temperature wave propagation in the soil. The phase of heat transfer by 24 hour period wave, analyzed by cross spectrum, showed that mean phase difference of the temperature wave increased almost linearly with the soil depth. The time lags by the phase difference from surface to 10, 20 and 40cm were 3.2,6.5 and 9.8 hours, respectively. Vertical thermal diffusivity of temperature wave of 24 hour period was estimated using one dimensional thermal diffusion model. Average diffusivity over the soil depths and seasons resulted in $0.70{\times}10^{-6}m^2/s$ at the middle station and $0.57{\times}10^{-6}m^2/s$ at the lowest station. The depth-averaged diffusivity was large in spring and small in summer and the seasonal mean diffusivity vertically increased from 2 cm to 10 cm and decreased from 10 cm to 40 cm. Thermal propagation speeds were estimated by $8.75{\times}10^{-4}cm/s,\;3.8{\times}10{-4}cm/s,\;and\;1.7{\times}10^{-4}cm/s$ from 2 cm to 10 cm, 20 cm and 40 cm, respectively, indicating the speed reduction with depth increasing from the surface.

Estimation of the Lowest and Highest Astronomical Tides along the west and south coast of Korea from 1999 to 2017 (서해안과 남해안에서 1999년부터 2017년까지 최저와 최고 천문조위 계산)

  • BYUN, DO-SEONG;CHOI, BYOUNG-JU;KIM, HYOWON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.4
    • /
    • pp.495-508
    • /
    • 2019
  • Tidal datums are key and basic information used in fields of navigation, coastal structures' design, maritime boundary delimitation and inundation warning. In Korea, the Approximate Lowest Low Water (ALLW) and the Approximate Highest High Water (AHHW) have been used as levels of tidal datums for depth, coastline and vertical clearances in hydrography and coastal engineering fields. However, recently the major maritime countries including USA, Australia and UK have adopted the Lowest Astronomical Tide (LAT) and the Highest Astronomical Tide (HAT) as the tidal datums. In this study, 1-hr interval 19-year sea level records (1999-2017) observed at 9 tidal observation stations along the west and south coasts of Korea were used to calculate LAT and HAT for each station using 1-minute interval 19-year tidal prediction data yielded through three tidal harmonic methods: 19 year vector average of tidal harmonic constants (Vector Average Method, VA), tidal harmonic analysis on 19 years of continuous data (19-year Method, 19Y) and tidal harmonic analysis on one year of data (1-year Method, 1Y). The calculated LAT and HAT values were quantitatively compared with the ALLW and AHHW values, respectively. The main causes of the difference between them were explored. In this study, we used the UTide, which is capable of conducting 19-year record tidal harmonic analysis and 19 year tidal prediction. Application of the three harmonic methods showed that there were relatively small differences (mostly less than ±1 cm) of the values of LAT and HAT calculated from the VA and 19Y methods, revealing that each method can be mutually and effectively used. In contrast, the standard deviations between LATs and HATs calculated from the 1Y and 19Y methods were 3~7 cm. The LAT (HAT) differences between the 1Y and 19Y methods range from -16.4 to 10.7 cm (-8.2 to 14.3 cm), which are relatively large compared to the LAT and HAT differences between the VA and 19Y methods. The LAT (HAT) values are, on average, 33.6 (46.2) cm lower (higher) than those of ALLW (AHHW) along the west and south coast of Korea. It was found that the Sa and N2 tides significantly contribute to these differences. In the shallow water constituents dominated area, the M4 and MS4 tides also remarkably contribute to them. Differences between the LAT and the ALLW are larger than those between the HAT and the AHHW. The asymmetry occurs because the LAT and HAT are calculated from the amplitudes and phase-lags of 67 harmonic constituents whereas the ALLW and AHHW are based only on the amplitudes of the 4 major harmonic constituents.