• Title/Summary/Keyword: three-phase current type

검색결과 223건 처리시간 0.028초

Magnetic Core Reactor for DC Reactor type Three-Phase Fault Current Limiter

  • Kim, Jin-Sa;Bae, Duck-Kweon
    • International Journal of Safety
    • /
    • 제7권2호
    • /
    • pp.7-11
    • /
    • 2008
  • In this paper, a Magnetic Core Reactor (MCR) which forms a part of the DC reactor type three-phase high-Tc superconducting fault current limiter (SFCL) has been developed. This SFCL is more economical than other types with three coils since it uses only one high-Tc superconducting (HTS) coil. When DC reactor type three-phase high-Tc SFCL is developed using just one coil, fewer power electronic devices and shorter HTS wire are needed. The SFCL proposed in this paper needs a power-linking device to connect the SFCL to the power system. The design concept for this device was sprang from the fact that the magnetic energy could be changed into the electrical energy and vice versa. Ferromagnetic material is used as a path of magnetic flux. When high-Tc superconducting DC reactor is separated from the power system by using SCRs, this device also limits fault current until the circuit breaker is opened. The device mentioned above was named Magnetic Core Reactor (MCR). MCR was designed to minimize the voltage drop and total losses. Majority of the design parameters was tuned through experiments with the design prototype. In the experiment, the current density of winding conductor was found to be $1.3\;A/mm^2$, voltage drop across MCR was 20 V and total losses on normal state was 1.3 kW.

Three-Phase Current Source Type ZVS-PWM Controlled PFC Rectifier with Single Active Auxiliary Resonant Snubber and Its Feasible Evaluations

  • Masayoshi Yamamoto;Shinji Sato;Tarek Ahmed;Eiji Hiraki;Lee, Hyun-Woo;Mutsuo Nakaoka
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제4B권3호
    • /
    • pp.127-133
    • /
    • 2004
  • This paper presents a prototype of three-phase current source zero voltage soft-switching PWM controlled PFC rectifier with Single Active Auxiliary Resonant Commutated Snubber (ARCS) circuit topology. The proposed three-phase PFC rectifier with sinewave current shaping and unity power factor scheme can operate under a condition of Zero Voltage Soft Switching (ZVS) in the main three phase rectifier circuit and zero current soft switching (ZCS) in auxiliary snubber circuits. The operating principle and steady-state performances of the proposed three-phase current source soft-switching PWM controlled PFC rectifier controlled by the DSP control implementation are evaluated and discussed on the basis of the experimental results of this active rectifier setup.

Three-Phase Soft Switching Sinewave Inverter with Bridge Power Module Package Configurated Auxiliary Resonant AC Link Snubber

  • Iyomori Hisashi;Nagai Shin-ichiro;Shiraishi Kazuhiro;Ahmed Tarek;Eiji Hiraki;Mutsuo Nakaoka
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.507-510
    • /
    • 2003
  • This paper presents a novel prototype of tile three-phase bridge power block module type a auxiliary resonant AC link snubber circuit, which is effectively used for the three-phase voltage source type sinewave soft switching PWM inverter using IGBTs. Its operating principle Is described for current source load model, along with its practical design approach based on the simulation data. The performance evaluation of the three-phase voltage source type snewave soft switching PWM inverter incorporating a single three-phase bridge mo여le of active auxiliary resonant AC link snubber treated here Is illustrated, which is concerned with power duality efficiency power loss analysis. This inverter is discussed as compared with those of tile three-phase voltage source type sinewave hard switching PWM inverter. The power loss analysis of this soft switching PWM Inverter using IGBT power modules is evaluated on the basis of the measured v-i characteristics and switching power losses of IGBT, and antiparaliel diodes. The practical effectiveness of this inverter is proven by the power loss analysis for distributed power supply.

  • PDF

일체화된 삼상 자속구속형 고온초전도 전류제한기의 동작모드 분석 (Analysis of Operational Modes in Integrated Three-Phase Flux-Lock Type Superconducting Fault Current Limiting)

  • 박충렬;두호익;최효상;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.186-187
    • /
    • 2006
  • The development of SFCL (Superconducting Fault Current Limiter) is getting more important as the power demand is increased rapidly. Up to now, several kinds of SFCL have been proposed and it is expected that they will be applied to appropriate position considering their own properties. Amongst those proposed SFCL, flux-lock type SFCL using the magnetic cancelation for current limiting has the advantages of overcoming the technical difficulties that other types of SFCLs have. In this paper, the integrated three-phase flux-lock type SFCL was fabricated and its operational modes were investigated through the short circuit tests. The operational mode were to divided into four mode according to the variation of the currents flowing into the secondary winding connected the superconducting elements and the speed of the quench generation. It was expected that the improvement of current limiting characteristics of the SFCL could be possible through control of the operational mode.

  • PDF

A Current Compensating Scheme for Improving Phase Noise Characteristic in Phase Locked Loop

  • Han, Dae Hyun
    • Journal of Multimedia Information System
    • /
    • 제5권2호
    • /
    • pp.139-142
    • /
    • 2018
  • This work presents a novel architecture of phase locked loop (PLL) with the current compensating scheme to improve phase noise characteristic. The proposed PLL has two charge pumps (CP), main-CP (MCP) and sub-CP (SCP). The smaller SCP current with same time duration but opposite direction of UP/DN MCP current is injected to the loop filter (LF). It suppresses the voltage fluctuation of LF. The PLL has a novel voltage controlled oscillator (VCO) consisting of a voltage controlled resistor (VCR) and the three-stage ring oscillator with latch type delay cells. The VCR linearly converts voltage into current, and the latch type delay cell has short active on-time of transistors. As a result, it improves phase noise characteristic. The proposed PLL has been fabricated with $0.35{\mu}m$ 3.3 V CMOS process. Measured phase noise at 1 MHz offset is -103 dBc/Hz resulting in 3 dBc/Hz phase noise improvement compared to the conventional PLL.

#Kr{\ddot}{a}mer# 시스템에 의한 3.phi.유도전동기의 특성에 관한 연구 (A study on characteristics of three phase induction motor by #Kr{\ddot}{a}mer# system)

  • 노창주;유춘식;정경열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.61-73
    • /
    • 1985
  • The induction motor is widely used in the power equipments of the ship and the various industrial drive applications because it is robust and relatively simple and cheap to manufacture, but it has a disadvantage that the speed of induction motor is not controlled in wide range such as d.c motor. In this paper, the characteristics relating to the Kramer system that the speed of three phase wound type induction motor is controlled by changing the exciting e.m.f. of the secondary circuit is described. In order to analyze the characteristics, a new simplified and approximated T-type equivalent circuit from the Kramer circuit with three phase graetz connection and d.c machine is proposed. The stator current, motor torque and mechanical output power are computed by the current, torque and power equations derived by its equivalent circuit. Through the experiments, the $I_f-N$, torque-slip and current-slip characteristic curves of the tested motor are obtained and the various needed constants are determined. The numerical values obtained from the above method are compared with experimental values under the same conditions. As a result of the above investigation, it is found that the induction motor speed by the Kramer system is controlled by 28 per cent under the rated speed by changing the field current of d.c motor and the values computed by the current and torque equations derived by the simplified and approximated T-type equivalent circuit generally come to approach the experimental values.

  • PDF

독립 3상 BLDC 전동기의 특성해석에 관한 연구 (Characteristic Analysis of Independent 3 phase BLDC Motor)

  • 조관준;오진석
    • 전력전자학회논문지
    • /
    • 제12권4호
    • /
    • pp.277-284
    • /
    • 2007
  • 본 논문은 전기추진시스템에 사용되는 BLDC 전동기 중에서 최대 토크 특성을 갖는 독립상 BLDC 전동기의 제어 특성에 대하여 기술하고자 한다. 독립 상 전동기는 각 상이 전기적으로 분리된 형태로 구성된 것이 특징이다. 이러한 특징을 분석하기 위하여 Y결선 3상 BLDC 전동기와 독립 3상 BLDC 전동기를 모델링하고, 시뮬레이션을 통하여 비교하였다. 시뮬레이션 결과 Y결선 3상 BLDC 전동기에 비하여 독립 3상 BLDC 전동기가 상전압이 높았다. 고정자 저항 및 인덕턴스가 일정할 때, 높은 상전압은 최대 상전류의 증가를 가져왔고, 이러한 전류 증가는 최대 토크를 증가시킨다. 그러므로 독립상 BLDC 전동기의 상전류를 제어함으로써 독립상 BLDC 전동기의 전류 맥동이 저감됨을 확인하였다.

삼상 변형 브리지 형태 한류기의 단순계통적용 시뮬레이션 (Simulation of the Three-Phase Modified Bridge Tyne Fault Current Limiter for Simplified Power System)

  • 이응로;이승제;이찬주;김태중;고태국
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2001년도 학술대회 논문집
    • /
    • pp.68-71
    • /
    • 2001
  • This paper deals with the operational characteristics of the three-phase modified bridge type fault current limiter(FCL) for 3.3kV/200A power system. This is a preliminary step to develop the FCL's faculties for an application to high voltage transmission line. A three-phase modified bridge type FCL consists of transformers, diodes, and a high-Tc superconducting coil. As the results of simulations, when the FCL of 1.5H inductance was installed in the power system. the fault current was reduced to be about 90% of that without FCL.

  • PDF

삼상형 dc reactor형태 한류기의 단락회로실험을 위한 시뮬레이션 (Simulation of the Three-phase DC Reactor Type Fault Current Limiter for the Short-circuit Test)

  • 이응로;이승제;이찬주;고태국;현옥배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.717-719
    • /
    • 2001
  • This paper deals with simulation of the three-phase dc reactor type fault current limiter(FCL). This is a preliminary step to develop the FCL's faculties for an application to high voltage transmission line. A three-phase dc reactor type FCL consists of transformers, diodes, and a superconducting coil. By this simulation for the short-circuit test we can investigate the safety of FCL's elements. And, result of simulation will contribute parameter toward optimal design.

  • PDF

Power Module Bridge Type Auxiliary Resonant AC Link Snubber-Assisted Three-Phase Soft Switching Inverter

  • Hisashi Iyomori;Nagai, Shin-ichiro;Masanobu Yoshida;Eiji Hiraki;Mutsuo Nakaoka
    • Journal of Power Electronics
    • /
    • 제4권2호
    • /
    • pp.77-86
    • /
    • 2004
  • This paper presents a novel three-phase power module bridge type auxiliary resonant AC link snubber for the three-phase voltage-fed sinwave soft switching PWM inverter operating under specific instantaneous space voltage vector modulation. The operating principle of this resonant snubber is described for current source load model during one switching period, along with its design approach based on the simulation data. The performance evaluations of space vector modulation three-phase sinewave soft switching inverter with a new three-phase active auxiliary resonant AC link snubber are discussed as compared with those of three-phase voltage source-fed sinewave hard switching PWM inverter with a standard space voltage vector modulation strategy. The power loss analysis and conventional efficiency estimation of three-phase soft switching PWM inverter using ICBT modules are carried out including all the conduction power losses based upon the measured v-i characteristics of IGBT and its antiparallel diode as well as their switching losses.