• 제목/요약/키워드: three-layer model

검색결과 806건 처리시간 0.027초

비선형 Ekman 펌핑 모델의 개발 (Development of a Nonlinear Ekman Pumping Model)

  • 서용권;박재현
    • 대한기계학회논문집B
    • /
    • 제30권6호
    • /
    • pp.568-577
    • /
    • 2006
  • Developed in this study is a nonlinear Ekman pumping model to be used in simulating the rotating flows with quasi-three-dimensional Navier-Stokes equations. In this model, the Ekman pumping velocity is given from the solution of the Ekman boundary-layer equations for the region adjacent to the bottom wall of the flow domain; the boundary-layer equations are solved in the momentum-integral form. The developed model is then applied to rotating flows in a rectangular container receiving a time-periodic forcing. By comparing our results with the DNS and experimental data we have validated the developed model. We also compared our results with those given from the classical Ekman pumping model. It was found that our model can predict the rotating flows more precisely than the classical linear model.

1차원 모델상에서 태풍통과시의 혼합층 수온 변화 (Temperature Variations in the Mixed Layer with the Passage of Typhoons Using One-Dimensional Numerical Model)

  • 홍철훈;마스다 아키라
    • 한국수산과학회지
    • /
    • 제51권1호
    • /
    • pp.107-112
    • /
    • 2018
  • One-dimensional numerical model is implemented to investigate temperature variations in the mixed layer depth (MLD) with the passage of typhoons. In the model, we assume a non-divergent, infinite ocean and consider wind effects only, excluding isostatic effects (inverse barometric effects) and upwelling with vertical movement of the water column. Numerical experiments investigate the effects of typhoon tracks on temperature variations, including their dependence on vertical resolutions in the MLD and these results are compared with those in a three-dimensional primitive equation model (POM). The model reproduces features of the observed temperature variations in the MLD fairly well, and implies that wind effects, rather than isostatic effects, play a predominant role in temporal and spatial temperature variations in the MLD. After the passage of typhoons, however, the model does not reproduce well the temperature variations observed in the MLD, because a limitation of the model is its inability to reproduce events such as cyclonic eddy formation (Hong et al., 2011; Masuda and Hong, 2011). The model also shows well the so called 'rightward bias' (Price, 1981) of sea surface cooling which is the most predominant in the right hand side of typhoon's track.

현존식생 내 초본층과 매토종자와의 관계 (The Relationship Between Soil Seed Bank and Ground Layer of Actual Vegetation in Korea)

  • 신현탁;이명훈
    • 한국환경과학회지
    • /
    • 제20권1호
    • /
    • pp.127-135
    • /
    • 2011
  • This study was carried out in each three study areas of Pinus densiflora community and Quercus mongolica community from March 5th, 2008 to October 15th, 2010 to analyze the relationship between seed bank and the actual vegetation of the lower layer. Based on the relationship between the lower layer of actual vegetation and the germination of seed bank, all of three study areas, the similarity of the actual vegetation of the lower layer and seed bank were high in Plot 1 (84.62%) and Plot 3 (89.91%). As for Quercus mongolica community, the similarity was high between the actual vegetation of the lower layer and seed bank in Plot 4 (82.24%) and Plot 6 (89.47%). Especially, the germination of the pine seed banks in the Pinus densiflora community compared to other tree species appeared in all. In Quercus mongolica community, Quercus mongolica did not appear among the seeds germinated in the seek bank, but the other tree species constituting the under layer of the community. In case of the restoration based on the actual vegetation, it is desirable to sue the lower layer of vegetation as the model for the making of its alternatives for restoration works of the species.

두꺼운 난류경계층 내부에 놓인 직사각형 프리즘 주위의 유동구조 (Flow Structure Around a Rectangular Prism Placed in a Thick Turbulent Boundary Layer)

  • 김경천;지호성;추재민;이석호;성승학
    • 대한기계학회논문집B
    • /
    • 제26권4호
    • /
    • pp.578-586
    • /
    • 2002
  • Flow structures around a rectangular prism have been investigated by using a PIV(Particle Image Velocimetry) technique. A thick turbulent boundary layer was generated by using spires arid roughness elements. The boundary layer thickness, displacement thickness and momentum thickness were 650mm, 117.4mm and 78mm, respectively. The ratio between the model height(40mm) and the boundary layer thickness H/$\delta$, was 0.06. The Reynolds number based on the free stream velocity and the height of the model was 7.9$\times$10$^3$. The PIV measurements were performed at three different wall normal planes. Three recirculation regions at forward facing step, top of the roof and backward facing step are clearly seen and show three dimensional features. Dramatic changes of flow patterns are observed in the wake regions in the different spanwise wall normal planes. Instead of reattachment and recirculation zone, rising streamlines are depicted at the normal planes near the side wall due to the interaction with a rising horse shoe vortex. The peak of turbulent kinetic energy occurs at the separation bubble on top of the roof and the magnitude is 2.5 times higher compared with that of the wake region.

단일 공동주위의 2차원과 3차원 초음속 유동 비교 (COMPARISON OF TWO- AND THREE-DIMENSIONAL SUPERSONIC TURBULENT FLOWS OVER A SINGLE CAVITY)

  • 우철훈;김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.235-238
    • /
    • 2005
  • The unsteady supersonic flow over two- and three-Dimensional cavities has been analyzed by the integration of unsteady Reynolds-Averaged Navier-Stokes(RANS) with the k - w turbulence model. The unsteady flow is characterized by the periodicity due to the mutual relation between the shear layer and the internal flow in cavities. Numerical method is upwind TVD scheme based on the flux vector split with the Van Leer limiters, and time accuracy is used explicit 4th stage Runge-Kutta scheme. Cavity flows are Comparison of two- and three-dimensional. The cavity has a L/D ratio of 3 for two-dimensional case. and same L/D and W/D ratio is 1 for three-dimensional case. The Mach and Reynolds numbers are held constant at 1.5 and 450000 respectively. For the three-dimensional case, the flow field is observed to oscillate in the 'shear layer mode' with a feedback mechanism that follow Rossiter's formula. On the other hand, the self-sustained oscillating flow transitions to a 'wake mode' for the two-dimensional simulation, with more violent fluctuations inside the cavity.

  • PDF

Vegetation Canopy의 접지층 환경에 대한 열적 영향 제1부 : 수치실험 (On the Thermal Effect of Vegetation Canopy to the Surface Sublayer Environment Part 1 : Numerical Experiment)

  • 진병화;황수진
    • 한국환경과학회지
    • /
    • 제8권2호
    • /
    • pp.145-150
    • /
    • 1999
  • To estimate the thermal effect of the vegetation canopy on the surface sublayer environment numerically, we used the combined model of Pielke's1) single layer model for vegetation and Deardorff's2) Force restore method(FRM) for soil layer. Application of present combined model to three surface conditions, ie., unsaturated bare soil, saturated bare soil and saturated vegetation canopy, showed followings; The diurnal temperature range of saturated vegetation canopy is only 20K, while saturated bare soil and unsaturated bare soil surface are 30K, 35K, respectively. The maximum temperature of vegetation canopy occurs at noon, about 2 hours earlier than that of the non-vegetation cases. The peak latent heat fluxes of vegetation canopy is simulated as a 600Wm-2 at 1300 LST. They have higher values during afternoon than beforenoon. Furthermore, the energy redistribution ratios to latent heat fluxes also increased in the late afternoon. Therefore, oasis effect driving from the vegetation canopy is reinforced during late afternoon compared with the non-vegetated conditions.

  • PDF

식생의 영향을 고려한 울산지역의 중규모 지역기상장에 관한 연구 (Numerical Analysis of Meso-Scale Circulation with Inclusion of a Layer of Vegetation over Ulsan Area)

  • 이성대
    • 한국수자원학회논문집
    • /
    • 제30권2호
    • /
    • pp.119-129
    • /
    • 1997
  • 울산지역의 해륙풍장을 해석하기 위해 3차원 중규모 지역기상 수치모형을 개발하여 흐름장의 변동을 수치해석하였다. 식생의 영향을 고려한 지표면 열수지모형을 이용하여 지표면의 온도 및 습도를 결정하도록 하였다. 그리고 접지층에서의 연직방향 확산계수는 Businger의 모형을, Eckman층에서는 Yamada의 난류 closure모형을 사용하여 계산하였다. 그 결과 울산지역의 해륙풍장의 거동특성을 해석하는데 있어서 본 모형은 효과적임을 알 수 있었다.

  • PDF

단립종(短粒種)벼의 박층흡습방정식(薄層吸濕方程式) (Thin-layer Rewetting Equation for Short Grain Rough Rice)

  • 정춘식;금동혁;박승제
    • Journal of Biosystems Engineering
    • /
    • 제12권2호
    • /
    • pp.38-43
    • /
    • 1987
  • An experimental study was conducted to develop a thin-layer rewetting equation of short grain rough rice of Akihikari variety. Four thin-layer rewetting equations were experimentally determined from $25^{\circ}C$ to $45^{\circ}C$ and 70%RH to 85%RH conditions. Diffusion, Henderson, Page, and Thompson equations widely used as thin-layer drying equations were selected. Experimental data were fitted to these equations using linear regression analysis except diffusion equation. The diffusivity in the diffusion equation was determined by optimization method. Four equations were highly significant. In order to compare the goodness of fit of each equation, the error mean square of each equawas calculated. The diffusion model was not a very good model because the error mean square was very large. The other three models showed the same level or error mean square and could predict satisfactorily the rewetting rate or short grain rough rice.

  • PDF

Prediction of Concrete Pumping Using Various Rheological Models

  • Choi, Myoung Sung;Kim, Young Jin;Kim, Jin Keun
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권4호
    • /
    • pp.269-278
    • /
    • 2014
  • When concrete is being transported through a pipe, the lubrication layer is formed at the interface between concrete and the pipe wall and is the major factor facilitating concrete pumping. A possible mechanism that illustrates to the formation of the layer is the shear-induced particle migration and determining the rheological parameters is a paramount factor to simulate the concrete flow in pipe. In this study, numerical simulations considering various rheological models in the shear-induced particle migration were conducted and compared with 170 m full-scale pumping tests. It was found that the multimodal viscosity model representing concrete as a three-phase suspension consisting of cement paste, sand and gravel can accurately simulate the lubrication layer. Moreover, considering the particle shape effects of concrete constituents with increased intrinsic viscosity can more exactly predict the pipe flow of pumped concrete.

직사각형 프리즘 주위의 유동구조에 대한 경계층 두께의 영향 (Effect of Boundary Layer Thickness on the Flow Around a Rectangular Prism)

  • 지호성;김경천;이승홍;부정숙
    • 대한기계학회논문집B
    • /
    • 제26권6호
    • /
    • pp.893-901
    • /
    • 2002
  • Effect of boundary layer thickness on the flow characteristics around a rectangular prism has been investigated by using a PIV(Particle Image Velocimetry) technique. Three different boundary layers(thick, medium and thin)were generated in the Atmospheric Boundary Layer Wind Tunnel at Pusan National University. The thick boundary layer having 670 mm thickness was generated by using spires and roughness elements. The medium thickness of boundary layer($\delta$=270 mm) was the natural turbulent boundary layer at the test section floor with fairly long developing length(18 m). The thin boundary layer($\delta$=36.5 mm) was generated on the smooth panel elevated 70cm from the wind tunnel floor. The Reynolds number based on the free stream velocity(3 ㎧) and the height of the model(40 mm) was 7.9$\times$10$^3$. The mean velocity vector fields and turbulent kinetic energy distributions were measured and compared. The effect of boundary layer thickness was clearly observed not only in the length of separation bubble but also in the location of reattachment point. The thinner the boundary layer thickness, the higher the turbulent kinetic energy Peak around the model roofbecame. It is strongly recommended that the height ratio between the model and the approaching boundary layer thickness should be encountered as a major parameter.