• Title/Summary/Keyword: three-dimensional tank

Search Result 138, Processing Time 0.03 seconds

Free Surface Oscillation in Sloshing Problem Predicted with ALE Method

  • Ushijima Satoru
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.11-22
    • /
    • 1999
  • A numerical prediction method has been proposed to predict non-linear free surface oscillation in a three-dimensional container. The fluid motions are numerically predicted with Navier-Stokes equations discretized in a Lagrangian scheme with sufficient numerical accuracy. The profile of a free surface is precisely represented with three-dimensional body-fitted coordinates (BFC), which are regenerated in each computational step on the basis of the arbitrary Lagrangian-Eulerian (ALE) formulation. In order to confirm the reliability of the computational method, it was firstly applied to three-dimensional flows within complicated-shaped rigid boundaries, such as curved pipes and ducts. Than it was applied to benchmark computations related to free surface oscillations. Following these basic verifications, non-linear sloshings in a cylindrical tank and transitions from sloshing to swirling motions were numerically predicted. Throughout these computations, the applicability of the present computational method has been confirmed and some of the predicted free surface motions were visualized as sequential images and animations to understand their dynamic futures.

  • PDF

Experimental Study of Sloshing Load on LNG Tanks for Unrestricted Filling Operation

  • Kim, Sang-Yeob;Kim, Yonghwan;Park, Jong-Jin;Kim, Booki
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.41-52
    • /
    • 2017
  • This paper presents a numerical and experimental study of sloshing loads on liquefied natural gas (LNG) vessels. Conventional LNG carriers with membrane-type cargo systems have filling restrictions from 10% to 70% of tank height. The main reason for such restrictions is high sloshing loads around these filling depths. However, intermediate filling depths cannot be avoided for most LNG vessels except the LNG carrier. This study attempted to design a membrane-type LNG tank with a modified lower-chamfer shape that allows all filling operations. First, numerical sloshing analysis was carried out to find an efficient height of the lower-chamfer that can reduce sloshing pressure at partially filled conditions. The numerical sloshing analysis program SHI-SLOSH was used for numerical simulation; this program is based on SOLA-VOF. The effectiveness of the newly designed tanks was validated by 1:50-scale three-dimensional tank tests. A total of three different tanks were tested: a conventional tank and two modified tanks. As test conditions, various filling depths and wave periods were considered, and the same test conditions were applied to the three tanks. During the test, slosh-induced dynamic pressures were measured around the corners of the tank wall. The measured pressure data were post-processed and the pressures of the three different tanks were statistically compared in several ways. Experimental results show that the modified tanks were quite effective in reducing sloshing loads at low filling conditions. This study demonstrated the possibility of all filling operations for LNG cargo containment systems.

Three-Dimensional Analysis of Composite External Fuel Tank Joint (항공기용 복합재 외부연료탱크 체결부의 3차원 구조해석)

  • Uhm Won-Seop;Jung Jae Woo;Kweon Jin-Hwe;Choi Jin-Ho;Yang Seung-Un;Lee Sang-Kwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.71-74
    • /
    • 2004
  • A composite-aluminum hybrid joint of composite external fuel tank of an aircraft has been analyzed by a 3-dimensional finite element method. Curvature and contact of the joint structure were considered in the analysis. Yamada-Sun failure criteria was utilized for the failure evaluation. A finite element program ABAQUS was used for the nonlinear contact analysis. The joint structure was predicted to be safe in both the test and analysis.

  • PDF

Studies on the Development of Three-Demensional Positioning System and Numerical Modeling of Fish Behavior I. Three-Demensional Positioning System for Investigating Fish Behavior (3차원 어군행동 계측 시스템의 개발과 어군행동의 수직 모델링에 관한 연구 1 . 3차원 어군행동 계측 시스템 -)

  • 김동수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.1
    • /
    • pp.21-29
    • /
    • 1998
  • In order to investigate the fish behavior in the water tank, the three dimensional positioning system with two CCD cameras was designed. The positioning system was tested at the vertical circulation water channel with observational part of 1,500L$\times$1,500W$\times$500H mm and the circular water tank with 2,050ø sub(1)$\times$1,850ø sub(2)$\times$400H mm. The observational error of vertical direction was larger than that of horizontal direction, and the observational error became enlarged in all directions according to the increase of depth and distance from the visual axis. The maximum observational errors of horizontal and vertical directions at the circulation channel ranged from -1.7 cm to 1.8 cm (2.4%) and zero to 2.1 cm (4.2%), respectively. But the errors of horizontal and vertical directions at the circular tank ranged from -1.3 cm to 1.3 cm (1.3%) and zero to 1.3 cm (3.3%), respectively.

  • PDF

Performance analysis of Savonius Rotor for Wave Energy Conversion using CFD

  • Zullah, Mohammed Aisd;Choi, Young-Do;Kim, Kyu-Han;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.600-605
    • /
    • 2009
  • A general purpose viscous flow solver Ansys CFX is used to study a Savonius type wave energy converter in a 3D numerical viscous wave tank. This paper presents the results of a computational fluid dynamics (CFD) analysis of the effect of blade configuration on the performance of 3 bladed Savonius rotors for wave energy extraction. A piston-type wave generator was incorporated in the computational domain to generate the desired incident waves. A complete OWC system with a 3-bladed Savonius rotor was modeled in a three dimensional numerical wave tank and the hydrodynamic conversion efficiency was estimated. The flow over the rotors is assumed to be two-dimensional (2D), viscous, turbulent and unsteady. The CFX code is used with a solver of the coupled conservation equations of mass, momentum and energy, with an implicit time scheme and with the adoption of the hexahedral mesh and the moving mesh techniques in areas of moving surfaces. Turbulence is modeled with the k.e model. Simulations were carried out simultaneously for the rotor angle and the helical twist. The results indicate that the developed models are suitable to analyze the water flows both in the chamber and in the turbine. For the turbine, the numerical results of torque were compared for all the cases.

  • PDF

Three Dimensional Simulation Model of Fuel Delivery Jet Pump (연료 송출용 제트펌프 3차원 전산해석 모델)

  • PARK, DAIN;YUN, JIN WON;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.3
    • /
    • pp.308-314
    • /
    • 2017
  • Jet pump in automotive fuel tank module is used to deliver fuel to fuel pump so that the pump is operated without aeration in suction side. In this study, three dimensional simulation model of jet pump is developed to understand performance variation over design parameters. Performance of jet pump is also investigated experimentally in terms of operating pressures. The experimental data is used to verify the three dimensional simulation model of jet pump. Verification results show that the three dimensional simulation model of jet pump is about 1% error with experiment. The simulations are conducted in terms of throat ratio and primary flow induction angle. As the throat ratio is increased, the flux ratio is trade-off at 3 times of throat diameter. On the other hand, as primary flow induction angle is increased, vapor pressure inside the nozzle is decreased. In summary, the results show that liquid jet pump has to be optimized over design parameters. Additionally, high velocity of induced flow is able to evolve cavitation phenomena inside the jet pump.

Application of Three-Dimensional Numerical Irregular wave Tank(3D-NIT) Model (3차원 불규칙 수치파동수조(3D-NIT) 모델의 적용성에 관한 연구)

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.5
    • /
    • pp.388-397
    • /
    • 2012
  • In this study, 3D-NIT(3-Dimensional Numerical Irregular wave Tank) model in which regular wave as well as stable irregular wave can be generated in 3-dimensional numerical irregular wave tank was proposed. To verify validity, the following steps need to be conducted: 1) comparative analysis between calculated waveforms and targeted waveforms at the wave generating point, 2) comparative analysis with the existing experimental values of overtopping volume estimated, targeting shore protection structures installed on a slope bed, 3) comparison with the existing numerical and hydraulic experimental results through application in the analysis on the wave deformation by structures and wave force acting on the vertical cylindrical structures. Based on the results, characteristics of the breaking wave forces according to incident waves and interval distance of structures were identified through application of 3D-NIT model in the analysis on the breaking wave forces acting on the cylindrical structures installed on a slope bed, and reflection and overtopping was reviewed through application in the special breakwaters on the domestic fields. The numerical results obtained the 3D-NIT model are in good agreement with experimental results, and its applicaion to the complex-shpaed coastal structures is verified.

Applications of Three-Dimensional Multiphase Flow Simulations for Prediction of Wave Impact Pressure (유체충격력 예측을 위한 3차원 다상류 시뮬레이션의 응용)

  • Jeong, Se-Min;Hwang, Sung-Chul;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.39-46
    • /
    • 2013
  • In this study, the impact loads on tank walls by sloshing phenomena and on a tall structure in a three-dimensional rectangular tank were predicted using multiphase flow simulations. The solver was based on the CIP/CCUP (Constraint interpolation CIP/CIP combined unified procedure) method, and the THINC-WLIC (Tangent hyperbola for interface capturing-weighted line interface calculation) scheme was used to capture the air-water interface. For the convection terms of the Navier-Stokes equations, the USCIP (Unsplit semi-lagrangian CIP) method was adopted. The results of simulations were compared with those of experiments. Overall, the comparisons were reasonably good.

A Numerical Study on Propagation Characteristics of Dam-break Wave through a Porous Structure (다공성 구조물을 통과하는 댐 붕괴파의 전파특성에 관한 수치적 연구)

  • Jeong, Woochang
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.1
    • /
    • pp.11-24
    • /
    • 2014
  • In this study, the characteristics of the propagation of dam-break wave through a porous structure in a water tank is numerically analyzed by using the three-dimensional numerical model (ANSYS CFX model). As results of comparison between the existing measured and simulated water depth distributions in and around a porous structure, the agreement is relatively well satisfied. Moreover, for the case of the presence in part of a porous structure in a water tank, the three-dimensional flow structure is numerically analyzed In general, compared with in the area with a porous structure, the abrupt variation of water depth occurs in the area without a porous structure. It is shown that the porous structure can play a role to decrease the abrupt variation of water depth.

Liquefaction Evaluation by One-Dimensional Effective Stress Analysis Using UBC3D-PLM Model (UBC3D-PLM 모델을 이용한 1차원 유효응력해석에 의한 액상화 평가)

  • Jung-Hoe Kim;Hyun-Sik Jin
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.151-167
    • /
    • 2023
  • This study compares the revised method in loose saturated sandy ground where the LNG storage tank will be installed with an evaluation method by one-dimensional effective stress analysis using the UBC3D-PLM model. Various laboratory and field tests were conducted to establish the parameters necessary for evaluation. The revised liquefaction evaluation method using the seismic response analysis result and N value from standard penetration testing evaluated the possibility of liquefaction as high, but assessment using effective stress analysis, which can consider various liquefaction resistance factors, found the site to be somewhat stable against liquefaction. One-dimensional finite element analysis using UBC3D-PLM modeling facilitated easier assessment of stability against liquefaction than the other methods and minimized the area required for reinforcement against liquefaction. In addition, it is expected that two-and three-dimensional numerical analysis considering the foundation of the LNG storage tank can identify the seismic design and behavior when liquefaction occurs.