• 제목/요약/키워드: three-dimensional hydrodynamic model

검색결과 143건 처리시간 0.027초

군산 연안 해역에서의 부영양화 제어에 관한 연구 (A study on Eutrophication control in coastal area of Gunsan)

  • 김종구;정태주
    • 한국환경과학회지
    • /
    • 제12권9호
    • /
    • pp.957-966
    • /
    • 2003
  • Gunsan coastal area is one of region increasing pollution problems. To improve water quality, the reduction of these nutrients loads should be indispensible. In this study, the three-dimensional numerical hydrodynamic and ecosystem model were applied to analyze the processes affecting the eutrophication. In field survey, the average concentrations of dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus(DIP) at surface waters were found to be 0.43mg/$\ell$ and 0.03mg/$\ell$ respectively, which were exceeding second grade of water quality criteria. In hydrodynamic modelling, the comparison between the simulated and observed tidal ellipses showed fairly good agreement. The ecosystem model was calibrated with the observed data in study area. The simulated results of DIN were fairly good coincided with the observed values within relative error of 32.39%, correlation coefficient(r) of 0.99. In the case of DIP, the simulated results were fairly good coincided with the observed values within relative error of 24.26%, correlation coefficient(r) of 0.82. The simulations of DIN and DIP concentrations using ecosystem model were performed under the conditions of 20∼80% reductions for pollutant loading. At simulation results, concentration of DIN and DIP were reduced to 20∼80% and under 10% in case of the 80% reduction of pollutant loading, respectively.

3차원 수리모형을 이용한 농업용 저수지의 파괴확률에 따른 하류부 피해예측 모델 개발 (Development of Downstream Flood Damage Prediction Model Based on Probability of Failure Analysis in Agricultural Reservoir)

  • 전정배;윤성수;최원
    • 한국농공학회논문집
    • /
    • 제62권3호
    • /
    • pp.95-107
    • /
    • 2020
  • The failures of the agricultural reservoirs that most have more than 50 years, have increased due to the abnormal weather and localized heavy rains. There are many studies on the prediction of damage from reservoir collapse, however, these referenced studies focused on evaluating reservoir collapse as single unit and applyed to one and two dimensional hydrodynamic model to identify the fluid flow. This study is to estimate failure probability of spillway, sliding, bearing capacity and overflowing targeting small and medium scale agricultural reservoirs. In addition, we calculate failure probability by complex mode. Moreover, we predict downstream flood damage by reservoir failure applying three dimensional hydrodynamic model. When the reservoir destroyed, the results are as follows; (1) the flow of fluid proceeds to same stream direction and to a lower slope by potential and kinetic energy; (2) The predicted damage in downstream is evaluated that damage due to building destruction is the highest.

Three-dimensional simulations of star formation in central region of barred-spiral galaxies

  • Seo, Woo-Young;Kim, Woong-Tae
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.39.2-39.2
    • /
    • 2016
  • The central regions of barred-spiral galaxies contain interesting gaseous structures such as dust lanes located at the leading side of the bar and nuclear rings that are sites of intense star formation. Our previous studies showed how gas structures form under the influence of a non-axisymmetric bar potential and temporal/spatial behavior of the star formation in nuclear rings. However, previous works were limited to 2-dimensional infinitesimally-thin, unmagnetized and isothermal disks. To study effects of cooling/heating, vertical motions of gas structures and magnetic field, we use Mesh-Free magneto-hydrodynamic simulation code GIZMO. We find that temporal variations of the star formation rates in the nuclear ring in the three-dimensional model are overall similar those in the previous two-dimensional results, although the former shows more violent small-scale fluctuations near the early primary peak. We will present our recent results about evolution of gaseous structures and star formation rate compare with results of previous studies.

  • PDF

A Multi-Dimensional Thermal-Hydraulic System Analysis Code, MARS 1.3.1

  • Jeong, Jae-Jun;Ha, Kwi-Seok;Chung, Bub-Dong;Lee, Won-Jae
    • Nuclear Engineering and Technology
    • /
    • 제31권3호
    • /
    • pp.344-363
    • /
    • 1999
  • A multi-dimensional thermal-hydraulic system analysis code, MARS 1.3.1, has been developed in order to have the realistic analysis capability of two-phase thermal-hydraulic transients for pressurized water reactor (PWR) plants. As the backbones for the MARS code, the RELAP5/MOD3.2.1.2 and COBRA-TF codes were adopted in order to take advantages of the very general, versatile features of RELAP5 and the realistic three-dimensional hydrodynamic module of COBRA-TF. In the MARS code, all the functional modules of the two codes were unified into a single code first. Then, the source codes were converted into the standard Fortran 90, and then they were restructured using a modular data structure based on "derived type variables" and a new "dynamic memory allocation" scheme. In addition, the Windows features were implemented to improve user friendliness. This paper presents the developmental work of the MARS version 1.3.1 including the hydrodynamic model unification, the heat structure coupling, the code restructuring and modernization, and their verifications.their verifications.

  • PDF

3 차원수치(次元數値)모델을 이용(利用)한 동지군해(東支郡海)의 태풍해일(颱風海溢)의 산정(算定) (Typhoon Surge Hindcast in the East China Sea Using a Three-dimensional Numerical Model)

  • 최병호
    • 대한토목학회논문집
    • /
    • 제4권4호
    • /
    • pp.67-78
    • /
    • 1984
  • 황해(黃海) 및 동지나해(東支那海)의 동수역학적(動水力學的) 3차원수치(次元數値)모델이 이 해역(海域)의 조석(潮汐), 해일(海溢), 항류순환(恒流循環) 및 조경(潮境) 등(等)의 물리적과정(物理的過程)을 연구(硏究)하기 위해 개발(開發)되었다. 본(本) 연구(硏究)에서 동지군해(東支郡海)의 3 차원(次元)모델은 1978년(年) 하절(夏節)의 5 일간(日間), 태풍(颱風)(웬디호(號))에 의(依)해 야기(惹起)된 해일(海溢)에 의한 해류분포(海流分布)를 산정(算定)하는데 적용(適用)되었다. 산정(算定)된 황해(黃海)와 동지나해(東支那海)의 지역적(地域的) 수심별해류분포(水深別海流分布)가 제시(提示)되었으며 분석검통(分析檢討)되었다. 본(本) 연구(硏究)는 역학원리(力學原理)에 입각(立脚)한 동지군해(東支郡海)의 태풍해일(颱風海溢) 예보체계(豫報體系)의 수립(樹立) 위(爲)한 첫 시도(試圖)로서 수행(遂行)된 것이다.

  • PDF

3차원 경합 海水流動 모델의 開發과 水營蠻의 폐수유동 (Development of Three-dimensional Baroclinic Hydrodynamic Model and flow Patterns of the Suyoung Bay)

  • 김차겸;이종섭
    • 한국해양학회지
    • /
    • 제28권2호
    • /
    • pp.86-100
    • /
    • 1993
  • ADI(Alternating Direction Implicit) 유한차분법을 사용하여 3차원 경합 해수유 동 모델 BACHOM-3을 개발하였다. 본 모델을 장방형 내만에서 하나의 결점을 갖는 정상 파에 적용하여 해석해와 비교하였으며, 그 결과 해석해와 잘 일치하였다. 모델의 현지 적용성과 수영만의 해수유동을 조사하기 위해 모델을 수영만에 적용하여 대조기 평수 시 현지관측결과와 비교하였으며, 그 결과 현지 관측결과와 비교적 잘 일치하였다. 만 중앙부의 제 1층(수심 0∼2 m)과 제 2층(수심 2∼5 m)에서 조석잔차류는 시계방향으로 회전하는 순환류가 나타났으며, 또한 낙조류가 창조류보다 강하게 나타났다. 계산된 유속분포에 의하면, 표층과 저층 사이에 유속의 위상차가 나타나며, 표층으로 갈수록 위상의 지연이 나타났다. 그리고, 본 모델을 홍수시와 바람 효과를 고려한 흐름 장의 계산에도 적용하였다. 해양에서 육지로 바람이 불 때 표층에서는 풍향에 대응하는 유 속분포를 나타냈으나, 저층의 육지경계부근에서는 풍향과 반대방향의 흐름이 나타났 다.

  • PDF

생태계모델을 이용한 가막만의 영양염 거동 특성 평가 (Estimation of Nutrients Transport in Kamak Bay using the Eco-hydrodynamic Model)

  • 김동명
    • 한국환경과학회지
    • /
    • 제12권7호
    • /
    • pp.745-751
    • /
    • 2003
  • The three-dimensional eco-hydrodynamic model was applied to estimate the physical process in terms of nutrients and net uptake(or regeneration) rate of nutrients in Kamak Bay for scenario analysis to find proper management plan. The estimation results of the physical process in terms of nutrients shelved that transportation of nutrients is dominant in surface level while accumulation of nutrients is dominant in bottom level. In the case of dissolved inorganic nitrogen, the results showed that the net uptake rate was 0∼60 mg/㎡/day in surface level(0∼3m), and the net regeneration rate was 0.0∼10.0 mg/㎡/day in middle level(3∼6m) and above 10mg/㎡/day in bottom level(6m∼below). In the case of dissolved inorganic phosphorus, the net uptake rate was 0.0∼3.0 mg/㎡/day in surface level, and the net regeneration rate was 0.5∼1.5 mg/㎡/day in middle level and 1.0∼3.0 mg/㎡/day in bottom level. These results indicates that net uptake and transport of nutrients are occurred predominantly at the surface level and the net generation and accumulation are dominant at bottom level. Therefore, it is important to consider the re-supplement of nutrients due to regeneration of bottom water.

3차원 ELCOM 모형을 이용한 대청호 수온성층 모의 (Simulations of Thermal Stratification of Daecheong Reservoir using Three-dimensional ELCOM Model)

  • 정세웅;이흥수;최정규;류인구
    • 한국물환경학회지
    • /
    • 제25권6호
    • /
    • pp.922-934
    • /
    • 2009
  • The transport of contaminants and spatial variation in a deep reservoir are certainly governed by the thermal structure of the reservoir. There has been continuous efforts to utilize three-dimensional (3D) hydrodynamic and water quality models for supporting reservoir management, but the efforts to validate the models performance using extensive field data were rare. The study was aimed to evaluate a 3D hydrodynamic model, ELCOM, in Daecheong Reservoir for simulating heat fluxes and stratification processes under hydrological years of 2001, 2006, 2008, and to assess the impact of internal wave on the reservoir mixing. The model showed satisfactory performance in simulating the water temperature profiles: the absolute mean errors at R3 (Hoenam) and R4 (Dam) sites were in the range of $1.38{\sim}1.682^{\circ}C$. The evaporative and sensible heat losses through the reservoir surface were maximum during August and January, respectively. The net heat flux ($H_n$) was positive from February to September, while the stratification formed from May and continued until September. Instant vertical mixing was observed in the reservoir during strong wind events at R4, and the model reasonably reproduced the mixing events. A digital low-pass filter and zero crossing method was used to evaluate the potential impact of wind-driven internal wave on the reservoir mixing. The results indicated that most of the wind events occurred in 2001, 2006, 2008 were not enough to develop persistent internal wave and effective mixing in the reservoir. ELCOM is a suitable 3D model for supporting water quality management of the deep and stratified reservoirs.

A hydrodynamic model of nearshore waves and wave-induced currents

  • Sief, Ahmed Khaled;Kuroiwa, Masamitsu;Abualtayef, Mazen;Mase, Hajime;Matsubara, Yuhei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권3호
    • /
    • pp.216-224
    • /
    • 2011
  • In This study develops a quasi-three dimensional numerical model of wave driven coastal currents with accounting the effects of the wave-current interaction and the surface rollers. In the wave model, the current effects on wave breaking and energy dissipation are taken into account as well as the wave diffraction effect. The surface roller associated with wave breaking was modeled based on a modification of the equations by Dally and Brown (1995) and Larson and Kraus (2002). Furthermore, the quasi-three dimensional model, which based on Navier-Stokes equations, was modified in association with the surface roller effect, and solved using frictional step method. The model was validated by data sets obtained during experiments on the Large Scale Sediment Transport Facility (LSTF) basin and the Hazaki Oceanographical Research Station (HORS). Then, a model test against detached breakwater was carried out to investigate the performance of the model around coastal structures. Finally, the model was applied to Akasaki port to verify the hydrodynamics around coastal structures. Good agreements between computations and measurements were obtained with regard to the cross-shore variation in waves and currents in nearshore and surf zone.

종규칙파중(縱規則波中)에서 수심(水深)이 선체운동(船體運動)에 미치는 영향(影響) (The Finite Depth Effect on the Ship Motion in Longitudinal Regular Head Waves)

  • 황종흘;이승준
    • 대한조선학회지
    • /
    • 제12권2호
    • /
    • pp.59-66
    • /
    • 1975
  • Recently, as the dimensions of energy carriers increase, especially in draft, a reliable prediction of the ship motions at finite depths of water becomes necessary. The purpose of this paper is to probe the effect of finite water depth on the hydrodynamic forces and ship motions, particularly heave and pitch, in longitudinal regular head waves, by comparing the experimental value of Freakes and Keay with the author's theoretical value obtained by applying the modified strip theory to the Mariner class ship. It is confirmed that generally the hydrodynamic coefficients in the equations of motion increase with decreasing water depth, and the wave exciting forces and moments decrease with decreasing water depth. Amplitudes of heave and pitch in longitudinal regular head waves decrease as the water depth in the range where the length of the incident wave is comparatively long. The effects of Froude Number on the hydrodynamic coefficients increase with decreasing water depth and is more noticeable in the case of heave than pitch. In heave, generally the discrepancy between the experimental value and the theoretical value is relatively small in the case of $F_n=O$, but it is very large in the case of $F_n=0.2$. It is considered that the trend stems from the ignorance of the three dimensional effect and the other effects due to shallowness of water on the hydrodynamic coefficients in the theoretical calculation. An extension of methods for calculating the two dimensional hydrodynamic forces to included the effect of forward speed should be recommended. It is required that more experimental works in finite water depths will be carried out for correlation studies between the theoretical calculation, according tp modified strip theory, and model experiments.

  • PDF