• Title/Summary/Keyword: three-dimensional analysis

Search Result 6,299, Processing Time 0.038 seconds

Gaussian Filtering Effects on Brain Tissue-masked Susceptibility Weighted Images to Optimize Voxel-based Analysis (화소 분석의 최적화를 위해 자화감수성 영상에 나타난 뇌조직의 가우시안 필터 효과 연구)

  • Hwang, Eo-Jin;Kim, Min-Ji;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.4
    • /
    • pp.275-285
    • /
    • 2013
  • Purpose : The objective of this study was to investigate effects of different smoothing kernel sizes on brain tissue-masked susceptibility-weighted images (SWI) obtained from normal elderly subjects using voxel-based analyses. Materials and Methods: Twenty healthy human volunteers (mean $age{\pm}SD$ = $67.8{\pm}6.09$ years, 14 females and 6 males) were studied after informed consent. A fully first-order flow-compensated three-dimensional (3D) gradient-echo sequence ran to obtain axial magnitude and phase images to generate SWI data. In addition, sagittal 3D T1-weighted images were acquired with the magnetization-prepared rapid acquisition of gradient-echo sequence for brain tissue segmentation and imaging registration. Both paramagnetically (PSWI) and diamagnetically (NSWI) phase-masked SWI data were obtained with masking out non-brain tissues. Finally, both tissue-masked PSWI and NSWI data were smoothed using different smoothing kernel sizes that were isotropic 0, 2, 4, and 8 mm Gaussian kernels. The voxel-based comparisons were performed using a paired t-test between PSWI and NSWI for each smoothing kernel size. Results: The significance of comparisons increased with increasing smoothing kernel sizes. Signals from NSWI were greater than those from PSWI. The smoothing kernel size of four was optimal to use voxel-based comparisons. The bilaterally different areas were found on multiple brain regions. Conclusion: The paramagnetic (positive) phase mask led to reduce signals from high susceptibility areas. To minimize partial volume effects and contributions of large vessels, the voxel-based analysis on SWI with masked non-brain components should be utilized.

Solution Structure of 21-Residue Peptide (Asp 84-Leu 104), Functional Site derived from $p16^{INK4A}$ ($p16^{INK4A}$ 단백질 활성부위(Asp 84-Leu 104)의 용액상 구조)

  • Lee, Ho-Jin;Ahn, In-Ae;Ro, Seonggu;Choi, Young-Sang;Yoon, Chang No;Lee, Kang-Bong
    • Analytical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.494-503
    • /
    • 2000
  • A 21-residue peptide corresponding to amino acids 84-104 of $p16^{INK4A}$, the tumor suppressor, has been synthesized and its structure was studied by Circular Dichroism, $^1H$ NMR spectroscopy and molecular modeling. A p16-derived peptide (84-104 amino acids) forming stable complex with CDK4 and CDK6 inhibits the ability of CDK4/6 to phosphorylate pRb in vitro, and blocks cell-cycle progression through G1/S phase as shown in the function of the full-length p16. Its NMR spectral data including NOEs, $^3J_{NH-H{\alpha}}$ coupling constants, $C_{\alpha}H$ chemical shift, the average amplitude of amide chemical shift oscillation and temperature coefficients indicate that the secondary structure of a p16-derived peptide is similar to that of the same region of full-length p16, which consists of helix-turn-helix structure. The 3-D distance geometry structure based on NOE-hased distance and torsion angle restraints is characterized by ${\gamma}$-turn conformation between residues $Gly^{89}-Leu^{91}$(${\varphi}_{i+1}=-79.8^{\circ}$, ${\varphi}_{i+1}=60.2^{\circ}$) as evidenced in a single crystal structure for the corresponding region of p18 or p19, but is undefined at both the N and C termini. This compact and rigid ${\gamma}$-turn region is considered to stabilize the structure of p16-derived peptide and serve as a site recognizing cyelin dependent kinase, and this well-defined ${\gamma}$-turn structure could be utilized for the design of anti-cancer drug candidates.

  • PDF

The Development of Vulnerable Elements and Assessment of Vulnerability of Maeul-soop Ecosystem in Korea (한국 마을숲 생태계 취약요소 발굴 및 취약성 평가)

  • Lim, Jeong-Cheol;Ryu, Tae-Bok;Ahn, Kyeong-Hwan;Choi, Byoung-Ki
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.34 no.4
    • /
    • pp.57-65
    • /
    • 2016
  • Maeul-soop(Village forest) is a key element of Korean traditional village landscape historically and culturally. However, a number of Maeul-soops have been lost or declined due to various influences since the modern age. For this Maeul-soop that has a variety of conservation values including historical, cultural and ecological ones, attention and efforts for a systematic conservation and restoration of Maeul-soop are needed. The purpose of the present study is to provide information on ecological restoration and sustainable use and management of Maeul-soops based on component plant species, habitat and location characteristics of 499 Maeul-soops spread throughout Korea. Major six categories of threat factors to Maeul-soop ecosystem were identified and the influence of each factor was evaluated. For the evaluation of weight by threat factors for the influence on the vulnerability of Maeul-soop ecosystem, more three-dimensional analysis was conducted using Analytic Hierarchy Process (AHP) analysis method. In the results of evaluation using AHP analysis method, reduction of area, among six categories, was spotted as the biggest threat to existence of Maeul-soops. Next, changes in topography and soil environment were considered as a threat factor of qualitative changes in Maeul-soop ecosystem. Influence of vegetation structure and its qualitative changes on the loss or decline of Masul-soop was evaluated to be lower than that of changes in habitat. Based on weight of each factor, the figures were converted with 100 points being the highest score and the evaluation of vulnerability of Maeul-soop was conducted with the converted figures. In the result of evaluation of vulnerability of Maeul-soops, grade III showed the highest frequency and a normal distribution was formed from low grade to high grade. 38 Maeul-soops were evaluated as grade I which showed high naturality and 10 Maeul-soops were evaluated as grade V as their maintenance was threatened. Also in the results of evaluation of vulnerability of each Maeul-soop, restoration of Maeul-soop's own area was found as top priority to guarantee the sustainability of Maeul-soops. It was confirmed that there was a need to prepare a national level ecological response strategy for each vulnerability factor of Maeul-soop, which was important national ecological resources.

A study on the utilization of drones and aerial photographs for searching ruins with a focus on topographic analysis (유적탐색을 위한 드론과 항공사진의 활용방안 연구)

  • Heo, Ui-Haeng;Lee, Wal-Yeong
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.2
    • /
    • pp.22-37
    • /
    • 2018
  • Unmanned aerial vehicles (UAV) have attracted considerable attention both at home and abroad. The UAV is equipped with a camera that shoots images, which is advantageous for access to areas where archaeological investigations are not possible. Moreover, it is possible to acquire three-dimensional spatial image information by modeling the terrain through aerial photographing, and it is possible to specify the interpretation of the terrain of the survey area. In addition, if we understand the change of the terrain through comparison with past aerial photographs, it will be very helpful to grasp the existence of the ruins. The terrain modeling for searching these remains can be divided into two parts. First, we acquire the aerial photographs of the current terrain using the drone. Then, using image registration and post-processing, we complete the image-joining and terrain-modeling using past aerial photographs. The completed modeled terrain can be used to derive several analytical results. In the present terrain modeling, terrain analysis such as DSM, DTM, and altitude analysis can be performed to roughly grasp the characteristics of the change in the form, quality, and micro-topography. Past terrain modeling of aerial photographs allows us to understand the shape of landforms and micro-topography in wetlands. When verified with actual findings and overlapping data on the modelling of each terrain, it is believed that changes in hill shapes and buried Microform can be identified as helpful when used in low-flying applications. Thus, modeling data using aerial photographs is useful for identifying the reasons for the inability to carry out archaeological surveys, the existence of terrain and ruins in a wide area, and to discuss the preservation process of the ruins. Furthermore, it is possible to provide various themes, such as cadastral maps and land use maps, through comparison of past and present topographical data. However, it is certain that it will function as a new investigation methodology for the exploration of ruins in order to discover archaeological cultural properties.

Stress distribution of molars restored with minimal invasive and conventional technique: a 3-D finite element analysis (최소 침습적 충진 및 통상적 인레이 법으로 수복한 대구치의 응력 분포: 3-D 유한 요소 해석)

  • Yang, Sunmi;Kim, Seon-mi;Choi, Namki;Kim, Jae-hwan;Yang, Sung-Pyo;Yang, Hongso
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.4
    • /
    • pp.297-305
    • /
    • 2018
  • Purpose: This study aimed to analyze stress distribution and maximum von Mises stress generated in intracoronal restorations and in tooth structures of mandibular molars with various types of cavity designs and materials. Materials and Methods: Three-dimensional solid models of mandible molar such as O inlay cavity with composite and gold (OR-C, OG-C), MO inlay cavity with composite and gold (MR-C, MG-C), and minimal invasive cavity on occlusal and proximal surfaces (OR-M, MR-M) were designed. To simulate masticatory force, static axial load with total force of 200 N was applied on the tooth at 10 occlusal contact points. A finite element analysis was performed to predict stress distribution generated by occlusal loading. Results: Restorations with minimal cavity design generated significantly lower values of von Mises stress (OR-M model: 26.8 MPa; MR-M model: 72.7 MPa) compared to those with conventional cavity design (341.9 MPa to 397.2 MPa). In tooth structure, magnitudes of maximum von Mises stresses were similar among models with conventional design (372.8 - 412.9 MPa) and models with minimal cavity design (361.1 - 384.4 MPa). Conclusion: Minimal invasive models generated smaller maximum von Mises stresses within restorations. Within the enamel, similar maximum von Mises stresses were observed for models with minimal cavity design and those with conventional design.

Effect of abutment superimposition process of dental model scanner on final virtual model (치과용 모형 스캐너의 지대치 중첩 과정이 최종 가상 모형에 미치는 영향)

  • Yu, Beom-Young;Son, Keunbada;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.3
    • /
    • pp.203-210
    • /
    • 2019
  • Purpose: The purpose of this study was to verify the effect of the abutment superimposition process on the final virtual model in the scanning process of single and 3-units bridge model using a dental model scanner. Materials and methods: A gypsum model for single and 3-unit bridges was manufactured for evaluating. And working casts with removable dies were made using Pindex system. A dental model scanner (3Shape E1 scanner) was used to obtain CAD reference model (CRM) and CAD test model (CTM). The CRM was scanned without removing after dividing the abutments in the working cast. Then, CTM was scanned with separated from the divided abutments and superimposed on the CRM (n=20). Finally, three-dimensional analysis software (Geomagic control X) was used to analyze the root mean square (RMS) and Mann-Whitney U test was used for statistical analysis (${\alpha}=.05$). Results: The RMS mean abutment for single full crown preparation was $10.93{\mu}m$ and the RMS average abutment for 3 unit bridge preparation was $6.9{\mu}m$. The RMS mean of the two groups showed statistically significant differences (P<.001). In addition, errors of positive and negative of two groups averaged $9.83{\mu}m$, $-6.79{\mu}m$ and 3-units bridge abutment $6.22{\mu}m$, $-3.3{\mu}m$, respectively. The mean values of the errors of positive and negative of two groups were all statistically significantly lower in 3-unit bridge abutments (P<.001). Conclusion: Although the number of abutments increased during the scan process of the working cast with removable dies, the error due to the superimposition of abutments did not increase. There was also a significantly higher error in single abutments, but within the range of clinically acceptable scan accuracy.

Identification and Chromosomal Reshuffling Patterns of Soybean Cultivars Bred in Gangwon-do using 202 InDel Markers Specific to Variation Blocks (변이영역 특이 202개 InDel 마커를 이용한 강원도 육성 콩 품종의 판별 및 염색체 재조합 양상 구명)

  • Sohn, Hwang-Bae;Song, Yun-Ho;Kim, Su-Jeong;Hong, Su-Young;Kim, Ki-Deog;Koo, Bon-Cheol;Kim, Yul-Ho
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.396-405
    • /
    • 2018
  • The areas of soybean (Glycine max (L.) Merrill) cultivation in Gangwon-do have increased due to the growing demand for well-being foods. The soybean barcode system is a useful tool for cultivar identification and diversity analysis, which could be used in the seed production system for soybean cultivars. We genotyped cultivars using 202 insertion and deletion (InDel) markers specific to dense variation blocks (dVBs), and examined their ability to identify cultivars and analyze diversity by comparison to the database in the soybean barcode system. The genetic homology of "Cheonga," "Gichan," "Daewang," "Haesal," and "Gangil" to the 147 accessions was lower than 81.2%, demonstrating that these barcodes have potentiality in cultivar identification. Diversity analysis of one hundred and fifty-three soybean cultivars revealed four subgroups and one admixture (major allele frequency <0.6). Among the accessions, "Heugcheong," "Hoban," and "Cheonga" were included in subgroup 1 and "Gichan," "Daewang," "Haesal," and "Gangil" in the admixture. The genetic regions of subgroups 3 and 4 in the admixture were reshuffled for early maturity and environmental tolerance, respectively, suggesting that soybean accessions with new dVB types should be developed to improve the value of soybean products to the end user. These results indicated that the two-dimensional barcodes of soybean cultivars enable not only genetic identification, but also management of genetic resources through diversity analysis.

Finite Element Method Modeling for Individual Malocclusions: Development and Application of the Basic Algorithm (유한요소법을 이용한 환자별 교정시스템 구축의 기초 알고리즘 개발과 적용)

  • Shin, Jung-Woog;Nahm, Dong-Seok;Kim, Tae-Woo;Lee, Sung Jae
    • The korean journal of orthodontics
    • /
    • v.27 no.5 s.64
    • /
    • pp.815-824
    • /
    • 1997
  • The purpose of this study is to develop the basic algorithm for the finite element method modeling of individual malocclusions. Usually, a great deal of time is spent in preprocessing. To reduce the time required, we developed a standardized procedure for measuring the position of each tooth and a program to automatically preprocess. The following procedures were carried to complete this study. 1. Twenty-eight teeth morphologies were constructed three-dimensionally for the finite element analysis and saved as separate files. 2. Standard brackets were attached so that the FA points coincide with the center of the brackets. 3. The study model of a patient was made. 4. Using the study model, the crown inclination, angulation, and the vertical distance from the tip of a tooth was measured by using specially designed tools. 5. The arch form was determined from a picture of the model with an image processing technique. 6. The measured data were input as a rotational matrix. 7. The program provides an output file containing the necessary information about the three-dimensional position of teeth, which is applicable to several finite element programs commonly used. The program for a basic algorithm was made with Turbo-C and the subsequent outfile was applied to ANSYS. This standardized model measuring procedure and the program reduce the time required, especially for preprocessing and can be applied to other malocclusions easily.

  • PDF

Upper Body Surface Change Analysis using 3-D Body Scanner (3차원 인체 측정기를 이용한 체표변화 분석)

  • Lee Jeongran;Ashdoon Susan P.
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.12 s.148
    • /
    • pp.1595-1607
    • /
    • 2005
  • Three-dimensional(3-D) body scanners used to capture anthropometric measurements are now becoming a common research tool far apparel. This study had two goals, to test the accuracy and reliability of 3-D measurements of dynamic postures, and !o analyze the change in upper body surface measurements between the standard anthropometric position and various dynamic positions. A comparison of body surface measurements using two different measuring methods, 3-D scan measurements using virtual tools on the computer screen and traditional manual measurements for a standard anthropometric posture and for a posture with shoulder flexion were $-2\~20mm$. Girth items showed some disagreement of values between the two methods. None of the measurements were significantly different except f3r the neckbase girth for any of the measuring methods or postures. Scan measurements of the upper body items showed significant linear surface change in the dynamic postures. Shoulder length, interscye front and back, and biacromion length were the items most affected in the dynamic postures. Changes of linear body surface were very similar for the two measuring methods within the same posture. The repeatability of data taken from the 3-D scans using virtual tools showed satisfactory results. Three times repeated scan measurements f3r the scapula protraction and scapula elevation posture were proven to be statistically the same for all measurement items. Measurements from automatic measuring software that measured the 3-D scan with no manual intervention were compared with the measurements using virtual tools. Many measurements from the automatic program were larger and showed quite different values.

PHOTOELASTIC ANALYSIS OF STRESS INDUCED BY FIXED PROSTHESES WITH RIGID OF NONRIGID CONNECTION BETWEEN NATURAL TOOTH AND OSSEOINTEGRATED IMPLANT (골육착성 보철 치료시 임플랜트와 자연 지대치와의 연결 방법에 따른 관탄성 응력 분석)

  • Kim, Young-Il;Chung, Chae-Heon;Cho, Kyu-Zong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.2
    • /
    • pp.271-300
    • /
    • 1993
  • The purpose of this study was to analyze the stress distribution at supporting bone according to the types of connection modality between implant and tooth in the superstrcture. This investigation evaluated the stress patterns in a photoelastic model produced by three different types of dental implants such as Branemark, Steri-Oss, IMZ and resin tooth using the techniques of quasi three dimensional photoelasticity. The teeth-supported bridge had a first molar pontic supported by second premolar and second molar as a control group. The implant and toothsupported bridge had a first molar pontic supported by second premolar and implant posterior retainer as an experimental group. Prostheses were mechanically connected to an adjacent second premolar by the rigid of nonrigid connection, Nonrigid connection used an attachment placed between the tooth-supported and fixture-supported component. The female(keyway) of attachment was placed on the distal end of the retainer supported by the tooth ; the male(Key) of attachment connected to the osseointegrated bridge was engaged into the keyway. All prostheses were casted in the same nonprecious alloy and were cemented and screwed on their respective abutments and implants. 16㎏ of vertical loads on central fossae of second premolar, first molar pontic, implant of second molar were applied respectively and 6.5㎏ of inclined load on middle buccal surface of first molar pontic was applied. The results were as follows : 1. Under the vertical load on the central fossa of first mloar pontic, the stress developed at the apex of tooth of implat was more uniformly distributed in the case of nonrigid connection than in the case of rigid connection. 2. Under the vertical load on the central fossa of first molar pontic, the stress developed around the cervical area of tooth of implant was larger in the case of rigid connection than in the case of nonrigid connection because the bending moment was more occured in the case of rigid connection than in the case of nonrigid connection. 3. Stress was more restricted to the loaded side of nonrigid connection than to that of rigid connection 4. Under the inclined load. The set screw loosening of implant was more easily occured in the case of nonrigid connection than in the case of rigid connection due to torque moment. 5. In the case of Branemark implant, the stress concentration in second premolar was larger and the stress developed around the cervical area of implant was lower than any other cases under the vertical load, because Branemark implant with the flexible gold screw was showed in incline toward second premolar by a bending moment. 6. The stress developed around the apex of tooth or implant was more uniformly distributed in the case of Steri-Oss implant with stiff screw than in the case of Branemark implant under the vertical load. But, the stress developed around the cervical area of the Steri-Oss implant was larger than that of any other implants because bending moment was occured by vertical migration of second premolar. 7. The stress distribution in the case of IMZ implant was similar to the case of natural teeth under small vertical load. But, the residual stress around the implant was showed to occurdue to deformation of IMC and sinking of screw under larger vertical load.

  • PDF