• Title/Summary/Keyword: three-bar linkage

Search Result 21, Processing Time 0.024 seconds

Walking Apparatus Design through Jansen Mechanism (얀센 메커니즘을 통한 보행 기구 설계)

  • Nam, Ungsig
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.473-476
    • /
    • 2016
  • In this study, important design factors in Jansen leg mechanism by which two legs can be driven by only one input like a motor are considered through method of transmitting motion in three-bar linkage and Grashof law in four-bar linkage. In preliminary design, by using EDISON m-sketch and its simulation which can observe trace of feet, two identical four-bar linkages are initially designed and two three-bar linkages are added to four-bar linkages sequentially. By analyzing GL(Ground Length) and GAC(Ground Angle Coefficient), the adequacy of the preliminary design was estimated. Final design of walking apparatus is implemented using CAD software, Assembly2 of EDISON Designer. Finally, proposals to improve software used in this study are suggested.

  • PDF

Synthesis of four-bar linkage motion generation using optimization algorithms

  • Phukaokaew, Wisanu;Sleesongsom, Suwin;Panagant, Natee;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.197-210
    • /
    • 2019
  • Motion generation of a four-bar linkage is a type of mechanism synthesis that has a wide range of applications such as a pick-and-place operation in manufacturing. In this research, the use of meta-heuristics for motion generation of a four-bar linkage is demonstrated. Three problems of motion generation were posed as a constrained optimization probably using the weighted sum technique to handle two types of tracking errors. A simple penalty function technique was used to deal with design constraints while three meta-heuristics including differential evolution (DE), self-adaptive differential evolution (JADE) and teaching learning based optimization (TLBO) were employed to solve the problems. Comparative results and the effect of the constraint handling technique are illustrated and discussed.

A Study on the Synthesis of Four-Bur Linkage Generating Automatic Path by Using B-Spline Interpolation (B-스플라인 보간법에 의한 자동 경로 생성이 가능한 4절링크의 합성에 관한 연구)

  • Kim, Jin-Su;Yang, Hyun-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.126-131
    • /
    • 1999
  • Up until now, it is said that no satisfactory computer solutions have been found for synthesizing four-bar linkage based on the prescribed coupler link curve. In our study, an algorithm has been developed to improve the design synthesis of four-bar linkage automatically generating prescribed path by using B-spline interpolation. The suggested algorithm generates the desired coupler curve by using B-spline interpolation, and hence the generated curve approximates as closely as to the desired curve representing coupler link trajectory. Also, when comparing each generated polygon with the control polygon, rapid comparison by applying convex hull concept. finally, optimization process using ADS is incorporated into the algorithm based on the 5 precision point method to reduce the total optimization process time. As for examples, three different four-bar linkages were tested and the results showed the effectiveness of the algorithm.

  • PDF

Design Parameters of A Six-bar Linkage Vibrating Digger (6절 링크를 이용한 진동굴취기의 설계요인)

  • 문학수;강화석
    • Journal of Biosystems Engineering
    • /
    • v.28 no.1
    • /
    • pp.19-26
    • /
    • 2003
  • An oscillating digger mechanism was designed, constructed. and tested. The mechanism is consisted of a six-bar linkage, one four-bar linkage was fer the digger blade and the other one fur variable soil-crop separation. Experimental variables were amplitude(3, 6, 9 mm). frequency(11.2, 14.9. 17.0 Hz), and forward speed of tractor(0.91, 1.13, 1.56 km/h). Each combination of these variables was replicated three times to measure the draft and torque for power requirement evaluation. and the broken-up soil height on the soil separation sieve mechanism. Four parameters λ(the ratio of vibration speed to forward velocity), p(the ratio of vibration acceleration to forward velocity), K(the ratio of vibration acceleration to gravitational acceleration), and T(the product of λ and K) were induced from three experimental variables: amplitude, frequency, and tractor speed. And the power requirement and soil separation ability were analyzed by regression. Though λ and K were known to be the representative parameters. T was the most moderate one to explain draft. torque. and soil separation in this study. It was estimated that the T equal to or greater than 2.4 was the minimum recommended value. Figure 18 would be useful fir the selection of amplitude. frequency, or operating tractor speed once any two variables are known.

Study on Non-linear Error Effect of Three Dimensional Control Surface Linkage Using Kinematic Analysis (3차원 조종면 변위센서 링크의 운동학적 해석을 통한 비선형 오차 영향 연구)

  • Lee, Sug-Chon;Kim, Jae-Eun;Lee, Sang-Jong
    • Journal of Aerospace System Engineering
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • It is very important to correctly set control surface linkage. But a lot of bad setting case has been seen in especially remote controled airplanes and middle size UAVs. In this paper, a three dimensional linkage from control surface to deflection sensor was analyzed kinematically and a position analysis was simulated using algebraic algorithm in terms of nonlinear error of deflection angle. Three correct settings of the linkage came out of this research. One is two-dimensional motion, another is link ratio of 1 and the other is that effective lever of the control surface should be perpendicular to a pushrod in their neutral position.

Implementation and Motion Control of Three Linkage Bar lingers

  • Jungs, Seul;Kim, Jeonggu;Kim, Sungsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.107.1-107
    • /
    • 2002
  • $\textbullet$ Robot fingers $\textbullet$ Kinematics and dynamics of robot fingers $\textbullet$ 3 bar linkages $\textbullet$ Microprocessor control1er $\textbullet$ Serial communication $\textbullet$ Simulation Studies

  • PDF

Mechanism synthesis of Planar Four-bar Linkage for rigid body guidance by bushing elements (부싱 요소를 이용한 평면 4 절 기구의 강체 유도 기구 합성)

  • Yoo, Hong Hee;Hong, Jung Ryeol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.464-466
    • /
    • 2014
  • The mechanism synthesis methods, graphical, analytical and computer-aided technique have been proposed for selecting and scaling mechanical system. According to developing computation tools, mechanism could be synthesized much faster and more correct than previous analytical ways by improved techniques. In this paper, the improved synthesis method is proposed to solve body guidance synthesis problem. To perform the mechanism synthesis for body guidance, a planar linkage is modeled as a set of free three bushings located in design space. The values of bushing stiffness and x, y position of bushings yielding a desired functional requirement related to input motion are found by using an optimization technique.

  • PDF

Design of height adjustable hanger using 4-bar linkage (4절 링크기구를 이용한 높이 조절 행거 설계)

  • Seyun Park;Hyuneun Lee;Yongsu Lee;Sang-Hyun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.525-530
    • /
    • 2023
  • Although double-stage hanger is used in many homes for its space utilization and ease of installation, it is inconvenient for users to take off clothes hung on the upper bar due to its high height. Therefore, this paper proposes a new type of double-stage hanger that allows users to easily hang or take out clothes hung on the upper bar while maintaining the function of the existing double-stage hanger. 4-bar link mechanism is applied so that the upper bar can come down to a convenient height with one operation. In addition, an appropriate link shape, length, and joint type are selected so that the height is adjusted three-dimensionally to prevent overlapping of clothes hanging on upper/lower bars. FEA analysis is performed to ensure that the presented hanger shape can support the load of clothes during height adjustment and the feasibility of the three-dimensional height adjustment hanger is verified through fabrication.

Investigation of Kinematic Relation Between Actuator and Control Surface Deflection Using Aileron Linkage Analysis (에일러론 링키지 해석을 통한 작동기 변위와 조종면 변위의 상관관계 규명)

  • Lee, Sugchon;Lee, Sang-Jong
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.3
    • /
    • pp.24-28
    • /
    • 2012
  • An actuator should be added to a existing control linkage to make manned aircraft to unmanned. But it is quiet difficult to synchronize actuator with control surface because non-linear error necessarily occurs when four-bar linkage acts in three dimensional motion. In addition, in point of controller design view, while a real-time model needs the control surface deflection as its input, controller needs the actuator command as its output. Hence, the relation between both should be investigated. In this paper, the mathematical relation between actuator and control surface deflection investigated by kinematic analysis of a plant aircraft. The performance margin of the selected actuator also was verified.

Underactuated Finger Mechanism for Body-Powered Partial Prosthesis (신체 힘에 의해 동작되는 부분 의수를 위한 부족구동 손가락 메커니즘)

  • Yoon, Dukchan;Lee, Geon;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.193-204
    • /
    • 2016
  • This paper presents an anthropomorphic finger prosthesis for amputees whose proximal phalanx is mutilated. The finger prosthesis to be proposed is able to make the amputees to perform the natural motion such as flexion/extension as well as self-adaptive grasping motion as if normal human finger does. The mechanism of finger prosthesis with three degrees-of-freedom (DOFs) consists of two five-bar and one four-bar linkages. Two passive components composed of torsional spring and mechanical stopper and only one active joint are employed in order to realize an underactuation. Each passive component is installed into the five-bar linkage. In order to activate the finger prosthesis, it is required for the user to flex and extend the remaining proximal phalanx on the metacarpophalangeal (MCP) joint, not an electric motor. Thus the finger prosthesis conducts not only the natural motion according to his/her intention but also the grasping motion through the deformation of springs by the object for human finger-like behavior. In order to reveal the operation principle of the proposed mechanism, kinematic analysis is performed for the linkage design. Finally both simulations and experiments are conducted in order to reveal the design feasibility of the proposed finger mechanism.