• Title/Summary/Keyword: three phase flow

Search Result 592, Processing Time 0.026 seconds

Seismic AVO Analysis, AVO Modeling, AVO Inversion for understanding the gas-hydrate structure (가스 하이드레이트 부존층의 구조파악을 위한 탄성파 AVO 분석 AVO모델링, AVO역산)

  • Kim Gun-Duk;Chung Bu-Heung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.643-646
    • /
    • 2005
  • The gas hydrate exploration using seismic reflection data, the detection of BSR(Bottom Simulating Reflector) on the seismic section is the most important work flow because the BSR have been interpreted as being formed at the base of a gas hydrate zone. Usually, BSR has some dominant qualitative characteristics on seismic section i.e. Wavelet phase reversal compare to sea bottom signal, Parallel layer with sea bottom, Strong amplitude, Masking phenomenon above the BSR, Cross bedding with other geological layer. Even though a BSR can be selected on seismic section with these guidance, it is not enough to conform as being true BSR. Some other available methods for verifying the BSR with reliable analysis quantitatively i.e. Interval velocity analysis, AVO(Amplitude Variation with Offset)analysis etc. Usually, AVO analysis can be divided by three main parts. The first part is AVO analysis, the second is AVO modeling and the last is AVO inversion. AVO analysis is unique method for detecting the free gas zone on seismic section directly. Therefore it can be a kind of useful analysis method for discriminating true BSR, which might arise from an Possion ratio contrast between high velocity layer, partially hydrated sediment and low velocity layer, water saturated gas sediment. During the AVO interpretation, as the AVO response can be changed depend upon the water saturation ratio, it is confused to discriminate the AVO response of gas layer from dry layer. In that case, the AVO modeling is necessary to generate synthetic seismogram comparing with real data. It can be available to make conclusions from correspondence or lack of correspondence between the two seismograms. AVO inversion process is the method for driving a geological model by iterative operation that the result ing synthetic seismogram matches to real data seismogram wi thin some tolerance level. AVO inversion is a topic of current research and for now there is no general consensus on how the process should be done or even whether is valid for standard seismic data. Unfortunately, there are no well log data acquired from gas hydrate exploration area in Korea. Instead of that data, well log data and seismic data acquired from gas sand area located nearby the gas hydrate exploration area is used to AVO analysis, As the results of AVO modeling, type III AVO anomaly confirmed on the gas sand layer. The Castagna's equation constant value for estimating the S-wave velocity are evaluated as A=0.86190, B=-3845.14431 respectively and water saturation ratio is $50\%$. To calculate the reflection coefficient of synthetic seismogram, the Zoeppritz equation is used. For AVO inversion process, the dataset provided by Hampson-Rushell CO. is used.

  • PDF

Building Transparency on the Total System Performance Assessment of Radioactive Repository through the Development of the Cyber R&D Platform; Application for Development of Scenario and Input of TSPA Data through QA Procedures (Cyber R&D Platform개발을 통한 방사성폐기물 처분종합성능평가(TSPA) 투명성 증진에 관한 연구; 시나리오 도출 과정과 TSPA 데이터 입력에서의 품질보증 적용 사례)

  • Seo, Eun-Jin;Hwang, Yong-Soo;Kang, Chul-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.65-75
    • /
    • 2006
  • Transparency on the Total System Performance Assessment (TSPA) is the key issue to enhance the public acceptance for a radioactive repository. To approve it, all performances on TSPA through Quality Assurance is necessary. The integrated Cyber R&D Platform is developed by KAERI using the T2R3 principles applicable for five major steps : planning, research work, documentation, and internal & external audits in R&D's. The proposed system is implemented in the web-based system so that all participants in TSPA are able to access the system. It is composed of three sub-systems; FEAS (FEp to Assessment through Scenario development) showing systematic approach from the FEPs to Assessment methods flow chart, PAID (Performance Assessment Input Databases) being designed to easily search and review field data for TSPA and QA system containing the administrative system for QA on five key steps in R&D's in addition to approval and disapproval processes, corrective actions, and permanent record keeping. All information being recorded in QA system through T2R3 principles is integrated into Cyber R&D Platform so that every data in the system can be checked whenever necessary. Throughout the next phase R&D, Cyber R&D Platform will be connected with the assessment tool for TSPA so that it will be expected to search the whole information in one unified system.

  • PDF

Gene Silencing of β-catenin by RNAi Inhibits Proliferation of Human Esophageal Cancer Cells by Inducing G0/G1 Cell Cycle Arrest

  • Wang, Jin-Sheng;Ji, Ai-Fang;Wan, Hong-Jun;Lu, Ya-Li;Yang, Jian-Zhou;Ma, Li-Li;Wang, Yong-Jin;Wei, Wu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2527-2532
    • /
    • 2012
  • Objectives: The aim of the present study was to explore mechanisms underlying the effects of down-regulating ${\beta}$-catenin expression on esophageal carcinoma (EC) cells. Methods: Cell cycle distribution and apoptosis were determined using flow cytometry and annexin V apoptosis assay, respectively. Transmission electron microscopy (TEM) was used to examine changes in ultrastructure, while expression of cyclin D1 protein and mRNA was detected by western blot and real-time PCR. Proliferating cell nuclear antigen (PCNA) and extracellular signal-regulated kinase (ERK) 1-2 were evaluated by Western blot analysis. PCNA labeling index (LI) was determined by immunocytochemistry. Results: Compared with pGen-3-con transfected and Eca-109 cells, the percentage of G0/G1-phase pGen-3-CTNNB1 transfected cells was obviously increased (P<0.05), with no significant difference among the three groups with regard to apoptosis (P>0.05). pGen-3-CTNNB1 transfected cells exhibited obvious decrease in cyclin D1 mRNA and protein expression (P<0.05) and the ultrastructure of Eca-109 cells underwent a significant change after being transfected with pGen-3-CTNNB1, suggesting that down-regulating ${\beta}$-catenin expression can promote the differentiation and maturation. The expression of PCNA and the ERKI/2 phosphorylation state were also down-regulated in pGen-3-CTNNB1 transfected cells (P<0.05). At the same time, the PCNA labeling index was decreased accordingly (P<0.05). Conclusion: Inhibition of EC Eca-109 cellproliferation by down-regulating ${\beta}$-catenin expression could improve cell ultrastructure by mediating blockade in G0/G1 through inhibiting cyclin D1, PCNA and the MAPK pathway (p-ERK1/2).

Spot marking of the multilayer thin films by Nd:YAG laser (Nd:YAG 레이저에 의한 다층 박막의 미소 점 마킹)

  • Kim, Hyun-Jin;Shin, Yong-Jin
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.361-368
    • /
    • 2004
  • We separated the multilayer structure of CD-R(compact disk-recordable) and investigated optimal spot marking conditions and physical and chemical transitions in response to various laser beam energh levels. Spot marking(80 ${\mu}{\textrm}{m}$ spot size) was produced on the surface of each layer using a Q-switched Nd:YAG laser between 27 mJ and 373mJ. By investigating resulting pit formation with Optical Microscopy(OM) and Optical Coherence Tomography(OCT), we analyzed the formation process of spot marking in the multilayer structure of different chemical composition. The localized heating of the substrate in the multilayer thin film caused the short temporal thermal expansion, and absorbed optical energy between reflective and dye interfaces melted dye and increased the volume. During the cooling phase, formation of pit and surrounding rim can be explained by three distinct processes; effect of surface tension, evaporation by spontaneous temperature increase due to laser energy, and mass flow from the recoil pressure. Our results shows that the spot marking formation process in the multilayer thin film is closely related to the layers' physical, chemical, and optical properties, such as surface tension, melt viscosity, layer thickness, and chemical composition.

Development of Method for Analysis of Four Sulfonylurea Pesticides, Rimsulfuron, Ethametsulfuron-methyl, Tribenuron-methyl, Chlorimuron-ethyl Residues by High-Performance Liquid Chromatography with Diode-Array Detection (HPLC/DAD를 이용한 림술푸론, 에타메트설푸론메틸, 트리베누론메칠, 클로리무론에칠 4종 성분의 잔류농약 분석법 개발)

  • Koo, Yun-Chang;Yang, Sung-Yong;Wang, Zeng;An, Eun-Mi;Heo, Kyoung;Kim, Hyeng-Kook;Shin, Han-Seung;Lee, Jin-Won;Lee, Kwang-Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.8
    • /
    • pp.1231-1235
    • /
    • 2010
  • The method for residue analysis of four sulfonylurea pesticides, rimsulfuron, ethametsulfuron-methyl, tribenuron-methyl and chlorimuron-ethyl was examined and analyzed by HPLC with ODS column ($250\;mm{\times}4.6\;mm$, $5\;{\mu}m$ diameter particle size) which was maintained at $35^{\circ}C$. Mobile phase consisted of solvent A (20 mM $KH_2PO_4$, pH 2.5) and solvent B (acetonitrile). Isocratic elution of the column with 45% solvent A and 55% solvent B at a flow rate of 1 mL/min resulted in retention times of 5.92, 6.54, 9.28, and 14.35 min for rimsulfuron, ethametsulfuron-methyl, tribenuron-methyl, and chlorimuron-ethyl, respectively. All injection volumes were $20\;{\mu}L$. The limit of quantitation was 0.02, 0.01, 0.001, and 0.004 mg/kg for rimsulfuron, ethametsulfuron-methyl, tribenuron-methyl, and chlorimuron-ethyl, respectively. Recovery rate test was performed with three farm products, rice, apple and soybean. Four sulfonylurea pesticides were spiked at concentrations of 0.05, 0.1 and 0.5 mg/kg. The recovery rates were ranged from 86.12% to 116.26% and the standard deviations of all experiments were within 10%.

Change of Fractured Rock Permeability due to Thermo-Mechanical Loading of a Deep Geological Repository for Nuclear Waste - a Study on a Candidate Site in Forsmark, Sweden

  • Min, Ki-Bok;Stephansson, Ove
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.187-187
    • /
    • 2009
  • Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in fractured rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the, virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this work are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model in the size of 2 km $\times$ 2 km $\times$ 800 m. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the comers of the repository. In the second part of the study, fracture data from Forsmark, Sweden is used to establish fracture network models (DFN). Stress paths obtained from the thermo-mechanical analysis were used as boundary conditions in DFN-DEM (Discrete Element Method) analysis of six DFN models at the repository level. Increases of permeability up to a factor of four were observed during thermal loading history and shear dilation of fractures was not recovered after cooling of the repository. An understanding of the stress path and potential areas of slip induced shear dilation and related permeability changes during the lifetime of a repository for spent nuclear fuel is of utmost importance for analysing long-term safety. The result of this study will assist in identifying critical areas around a repository where fracture shear slip is likely to develop. The presentation also includes a brief introduction to the ongoing site investigation on two candidate sites for geological repository in Sweden.

  • PDF

An Experimental Study on the Heat Transfer Characteristics during Outward Melting Process of Ice in a Vertical Cylinder(comparison of thermal performance on the flow direction of working fluid) (수직원통형 빙축열조내 얼음의 외향용융과정시 전열특성에 관한 실험적 연구(작동 유체의 유입 방향에 따른 비교))

  • Kim, D.H.;Kim, D.C.;Kim, I.K.;Kim, Y.K.;Yim, C.S.
    • Solar Energy
    • /
    • v.16 no.2
    • /
    • pp.113-122
    • /
    • 1996
  • This study presents experimental results of heat transfer characteristics of P.C.M. during outward melting process in a vertical cylinder. The experiment was carried out in six conditions, i. e., three different inlet temperature($7^{\circ}C,\;4^{\circ}C\;and\;1^{\circ}C$) and two directions of working fluid(upward and downward). Melting P.C.M. produced a bell-shaped phase change interface. When the inlet temperature was $7^{\circ}C$, the lower region remained at $4^{\circ}C$ until the temperature of upper region reached $4^{\circ}C$. This was due to the state of maximum density of the lower region. When the direction of the working fluid in the case of $7^{\circ}C$, inlet temperature, was upward, the rate of melting and the total melting energy were higher than when it's direction was downward. But the rate of melting and the total melting energy appeared higher value as it's direction was downward when the inlet temperature is $4^{\circ}C$ and $1^{\circ}C$.

  • PDF

A Study on the Expansion of the Function of the Archives to the Agency Archives (기관 아카이브로의 기록관 기능 확대 방안 연구)

  • Ju, Hyun-Mi;Kim, Ik-Han
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.18 no.1
    • /
    • pp.129-154
    • /
    • 2018
  • It is time to prepare for the imminent development from the field of records management through decentralization to the records management of the new age in accordance with the flow of decentralization. To overcome a centralized record management system, more archives should be established to realize autonomous and decentralized records management. In accordance with the shift to a full-scale electronic record management environment, the appropriateness and effectiveness of the three-phase system of processing-archival-permanent record management based on physical transfer should be reviewed in terms of transfer cost and work efficiency. The archives should function as institutional archives to carry out the continuous volume record management and the autonomous record management at the institution level. This study examined the possibilities and implications of the archives to expand their functions as archives of institutions for the decentralization of record management and information governance orientation. In addition, the study diversified the types of records management institutions as a way to accomplish this and determined a way to design the functions of archives that integrate the current-end-end-end records management. At each level, institutions should set up archives based on their circumstances and aim at information governance at the level of each archive. Moreover, each archive level should establish a horizontal network to govern record information management.

Biotreatment Technologies for Air Pollution Control (생물학적 처리기술을 이용한 대기오염 제어)

  • Won, Yang-Soo
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.1-15
    • /
    • 2007
  • Biological treatment is a relatively recent air pollution control technology in which off-gases containing biodegradable odors and volatile organic compounds(VOCs) are vented through microbes. It is a promising alternative to conventional air pollution control methods. Bioreactors for air pollution control have found most of their success in the treatment of dilute and high flow waste air streams containing VOCs and odor compounds. They offer several advantages over traditional technologies such as incineration or adsorption. These include lower treatment costs, absence of formation of secondary pollutants, no spent chemicals, low energy demand and low temperature treatment. The three most widely used technologies are described, namely biofiltration, biotrickling filtration, bioscrubbing. The most widely used bioreactor for air pollution control is biofilter, but it has several limitations. In the past years major progress has been accomplished in the development of vapor phase bioreaction systems, for solving problems of biofilter. Biotrickling filters are more complex than biofilters, but are usually more effective, especially for the treatment of compounds which are difficult to degrade or compounds that generate acidic by-products. This, paper reviews fundamental and theoretical/practical aspect of air pollution control in biofilter, biotrickling filter and bioscrubber, focusing more extensively on biotrickling filtration. Special emphasis is given to the operating parameters and the factors influencing performance for air pollution control, and cost estimation in biotreatment technologies.

  • PDF

Numerical Simulation for Tsunami Force Acting on Onshore Bridge (for Solitary Wave) (연안교량에 작용하는 지진해일파력에 관한 수치시뮬레이션(고립파의 경우))

  • Lee, Kwang-Ho;Woo, Kyung-Hwan;Kim, Do-Sam;Jeong, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.2
    • /
    • pp.92-108
    • /
    • 2017
  • Present work shows a numerical method to analysis of interaction analysis between solitary wave and onshore bridge. Numerical simulation is carried out by TWOPM-3D (three-dimensional one-field model for immiscible two-phase flows), which is based on Navier-Stokes solver. To do this, the solitary wave is generated numerically in numerical wave channel, and numerical results and experimental results were compared and analyzed in order to verify the applicability of force acting on an onshore bridge. From this, we discussed precisely the characteristics of horizontal and vertical forces (uplift and downward forces) changes including water level and velocity changes due to the variation of solitary wave height, water depth, onshore bridge's location and type, and number of girder. Furthermore, It is revealed that the maximum horizontal and vertical forces acting on the girder bridge show different varying properties according to the number of girder, although each maximum force acting on the girder bridge is proportional to the increasement of incident solitary wave height, and the entrained air in the fluid flow affects the vertical force highly.