• Title/Summary/Keyword: three dimensional volume

Search Result 1,001, Processing Time 0.027 seconds

Quantitative analysis of the TMJ movement with a new mandibular movement tracking and simulation system

  • Kim, Dae-Seung;Hwang, Soon-Jung;Choi, Soon-Chul;Lee, Sam-Sun;Heo, Min-Suk;Heo, Kyung-Hoe;Yi, Won-Jin
    • Imaging Science in Dentistry
    • /
    • v.38 no.4
    • /
    • pp.203-208
    • /
    • 2008
  • Purpose : The purpose of this study was to develop a system for the measurement and simulation of the TMJ movement and to analyze the mandibular movement quantitatively. Materials and Methods : We devised patient-specific splints and a registration body for the TMJ movement tracking. The mandibular movements of the 12 subjects with facial deformity and 3 controls were obtained by using an optical tracking system and the patient-specific splints. The mandibular part was manually segmented from the CT volume data of a patient. Three-dimensional surface models of the maxilla and the mandible were constructed using the segmented data. The continuous movement of the mandible with respect to the maxilla could be simulated by applying the recorded positions sequentially. Trajectories of the selected reference points were calculated during simulation and analyzed. Results : The selected points were the most superior point of bilateral condyle, lower incisor point, and pogonion. There were significant differences (P<0.05) between control group and pre-surgical group in the maximum displacement of left superior condyle, lower incisor, and pogonion in vertical direction. Differences in the maximum lengths of the right and the left condyle were 0.59${\pm}$0.30 mm in pre-surgical group and 2.69${\pm}$2.63 mm in control group, which showed a significant difference (P<0.005). The maximum of differences between lengths of the right and the left calculated during one cycle also showed a significant difference between two groups (P<0.05). Conclusion : Significant differences in mandibular movements between the groups implies that facial deformity have an effect on the movement asymmetry of the mandible. (Korean J Oral Maxillofac Radiol 2008; 38 : 203-8)

  • PDF

Evaluation of the heart and lung dosimetric parameters in deep inspiration breath hold using 3D Slicer

  • Eskandari, Azam;Nasseri, Shahrokh;Gholamhosseinian, Hamid;Hosseini, Sare;Farzaneh, Mohammad Javad Keikhai;Keramati, Alireza;Naji, Maryam;Rostami, Atefeh;Momennezhad, Mehdi
    • Radiation Oncology Journal
    • /
    • v.38 no.1
    • /
    • pp.68-76
    • /
    • 2020
  • Purpose: The present study was conducted to compare dosimetric parameters for the heart and left lung between free breathing (FB) and deep inspiration breath hold (DIBH) and determine the most important potential factors associated with increasing the lung dose for left-sided breast radiotherapy using image analysis with 3D Slicer software. Materials and Methods: Computed tomography-simulation scans in FB and DIBH were obtained from 17 patients with left-sided breast cancer. After contouring, three-dimensional conformal plans were generated for them. The prescribed dose was 50 Gy to the clinical target volume. In addition to the dosimetric parameters, the irradiated volumes and both displacement magnitudes and vectors for the heart and left lung were assessed using 3D Slicer software. Results: The average of the heart mean dose (Dmean) decreased from 5.97 to 3.83 Gy and V25 from 7.60% to 3.29% using DIBH (p < 0.001). Furthermore, the average of Dmean for the left lung was changed from 8.67 to 8.95 Gy (p = 0.389) and V20 from 14.84% to 15.44% (p = 0.387). Both of the absolute and relative irradiated heart volumes decreased from 42.12 to 15.82 mL and 8.16% to 3.17%, respectively (p < 0.001); however, these parameters for the left lung increased from 124.32 to 223.27 mL (p < 0.001) and 13.33% to 13.99% (p = 0.350). In addition, the average of heart and left lung displacement magnitudes were calculated at 7.32 and 20.91 mm, respectively. Conclusion: The DIBH is an effective technique in the reduction of the heart dose for tangentially treated left sided-breast cancer patients, without a detrimental effect on the left lung.

A Study on the Dyadic Sorting method for the Regularization in DT-MRI (Dyadic Sorting 방법을 이용한 DT-MRI Regularization에 관한 연구)

  • Kim, Tae-Hwan;Woo, Jong-Hyung;Lee, Hoon;Kim, Dong-Youn
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.4
    • /
    • pp.30-39
    • /
    • 2010
  • Since Diffusion tensor from Diffusion Tensor Magnetic Resonance Imaging(DT-MRI) is so sensitive to noise, the principle eigenvector(PEV) calculated from Diffusion tensor could be erroneous. Tractography obtained from PEV could be deviated from the real fiber tract. Therefore regularization process is needed to eliminate noise. In this paper, to reduce noise in DT-MRI measurements, the Dyadic Sorting(DS) method as regularization of the eigenvalue and the eigenvector is applied in the tractography. To resort the eigenvalues and the eignevectors, the DS method uses the intervoxel overlap function which can measure the overlap between eigenvalue-eigenvector pairs in the $3\times3$ pixel. In this paper, we applied the DS method to the three-dimensional volume. We discuss the error analysis and numerical study to the synthetic and the experimental data. As a result, we have shown that the DS method is more efficient than the median filtering methods as much as 79.97%~83.64%, 85.62%~87.76% in AAE, AFA respectively for the corticospinal tract of the experimental data.

Solid-Phase Refolding Technology in Recombinant Proteins Recovery: Application Examples to Various Biopharmaceutical Proteins (유전자재조합 단백질 회수 공정에서의 고체상 재접힘 기술: 여러 바이오의약 단백질에의 적용 사례)

  • Kim, Min Young;Suh, Chang Woo;Kim, Chang Sung;Jo, Tae Hoon;Park, Sang Joong;Choi, Won Chan;Lee, Eun Kyu
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.187-201
    • /
    • 2005
  • Bioprocessing technologies utilizing 'biorecognition' between a solid matrix and a protein is being widely experimented as a means to replacing the conventional, solution-based technology. Frequently the matrices are chromatographic resins with specific functional groups exposed outside. Since the reactions of and interactions with the proteins occur as they are attached to the solid matrix, this 'solid-phase' processing has distinct advantages over the solution-phase technology. Solid-phase refolding of inclusion body proteins uses ion exchange resins to adsorb denaturant-dissolved inclusion body. As the denaturant is slowly removed from the micromoiety around the protein, it is refolded into a native, three-dimensional structure. Once the refolding is complete, the folded protein can be eluted by a conventional elution technique such as the salt-gradient. This concept was successfully extended to 'EBA (expanded bed adsorption)-mediated refolding,' in which the denaturant-dissolved inclusion body in whole cell homogenate is adsorbed to a Streamline resin while cell debris and other impurity proteins are removed by the EBA action. The adsorbed protein follows the same refolding steps. This solid-phase refolding process shows the potential to improve the refolding yield, reduce the number of processing steps and the processing volume and time, and thus improve the overall process economics significantly. In this paper, the experimental results of the solid-phase refolding technology applied to several biopharmaceutical proteins of various types are presented.

Simulation of Circulation and Water Qualities on a Partly Opened Estuarine Lake Through Sluice Gate (배수갑문을 통해 부분 개방된 하구호에서의 순환과 수질모의)

  • 서승원;김정훈;유시흥
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.2
    • /
    • pp.136-150
    • /
    • 2002
  • To improve the water quality of the recently constructed Siwhaho, sluice gates were operated to allow free exchange of water with the sea. This estuarine lake connected to the outer sea through narrow gates is affected mainly by flushing by gate operation and river flows and wind forcing sometimes. As a predicting tool far the water qualities, a three-dimensional finite volume model CE-QUAL-ICM is incorporated into a finite element hydrodynamic model, TIDE3D. In coupling these two different modules, a new error minimization technique is applied by considering conservation of mass. Model tests for one year after calibration and validation using field observation show that eutrophication and other biological changes reach quasi-steady state after initial 60 days of simulation, thus it would be necessary to consider moderate ramp up option to remove initial uncertainties due to cold start option. Sediment-water interaction might not be a concern in the long-term simulation, since its effect is negligible. Simulated results show the newly applied scheme can be applied with satisfaction not only fur lessening of eutrophic processes in an estuarine lake but also looking for some active circulation to improve water quality.

Modeling of SP responses for geothermal-fluid flow within EGS reservoir (EGS 지열 저류층 유체 유동에 의한 SP 반응 모델링)

  • Song, Seo Young;Kim, Bitnarae;Nam, Myung Jin;Lim, Sung Keun
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.223-231
    • /
    • 2015
  • Self-potential (SP) is sensitive to groundwater flow and there are many causes to generate SP. Among many mechanisms of SP, pore-fluid flow in porous media can generate potential without any external current source, which is referred to as electrokinetic potential or streaming potential. When calculating SP responses on the surface due to geothermal fluid within an engineered geothermal system (EGS) reservoir, SP anomaly is usually considered to be generated by fluid injection or production within the reservoir. However, SP anomaly can also result from geothermal water fluid within EGS reservoirs experiencing temperature changes between injection and production wells. For more precise simulation of SP responses, we developed an algorithm being able to take account of SP anomalies produced by not only water injection and production but also the fluid of geothermal water, based on three-dimensional finite-element-method employing tetrahedron elements; the developed algorithm can simulate electrical potential responses by both point source and volume source. After verifying the developed algorithm, we assumed a simple geothermal reservoir model and analyzed SP responses caused by geothermal water injection and production. We are going to further analyze SP responses for geothermal water in the presence of water production and injection, considering temperature distribution and geothermal water flow in the following research.

Sensitivity Analysis of Model Parameters used in a Coupled Dam-Break/FLO-2D Model to Simulate Flood Inundation (FLO-2D에서 댐붕괴 모형 매개변수의 침수 범위 민감도 분석)

  • Lee, Khil-Ha;Son, Myung-Ho;Kim, Sung-Wook;Yu, Soonyoung;Cho, Jin-Woo;Kim, Jin-Man;Jung, Jung-Kyu
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.53-67
    • /
    • 2014
  • Numerical modeling is commonly used to reproduce the physical phenomena of dam-break and to compile resulting flood hazard maps. The accuracy of a dam-break model depends on the physical structure that describes the volume of storage, breach formation and progress, input variables, and model parameters. Model input and parameters are subjective in that they are prescribed; hence, caution is needed when interpreting the results. This study focuses on three parameters (breach degree ${\theta}$, shape factor P, and collapse rate k) used when the dam-break model is coupled with FLO-2D (a two-dimensional flood simulation model) to estimate flood coverage and depth etc. The results show that the simulation is sensitive to the shape factor P and the collapse rate k but not to the breach degree ${\theta}$. This study will contribute to reducing flood damage from dam-break disasters in the future.

Effects of Transverse Cracks on Stress Distributions of Continuously Reinforced Concrete Tracks Subjected to Train Loads (연속철근 콘크리트궤도의 횡균열이 열차 하중에 의한 응력 분포에 미치는 영향)

  • Bae, Sung Geun;Choi, Seongcheol;Jang, Seung Yup;Cha, Soo Won
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.5
    • /
    • pp.355-364
    • /
    • 2014
  • The restrained volume changes of concrete due to variations of temperature and moisture produce transverse cracks in continuously reinforced concrete tracks (CRCTs). Such cracks are known to significantly affect the behaviors and long-term performance of CRCT. To investigate the effects of the transverse cracks on the behavior of CRCT and to develop more reasonable maintenance standards for cracks, in this study, the stress distribution of the track concrete layers (TCL) and the hydraulically stabilized base course (HSB) with transverse cracks were numerically predicted by a three dimensional finite element analysis when CRCT was subjected to train loads. The results indicate that the bending stresses of TCL and vertical stresses at the interfaces between TCL and HSB increased as the cracks were deepened. In addition, vertical stresses were locally concentrated near reinforcing steel in cracks in TCL when full-depth cracks developed, which may lead to punch-outs in CRCTs. Comparably, the effects of crack width and spacing were not as significant as crack depth. This study indicates that ensuring the long-term performance of CRCTs requires adequate maintenance not only for crack width and spacing but also for crack depth. Our results also show that locating HSB joints between sleepers is beneficial to the long-term performance of CRCTs.

Construction of Open-source Program Platform for Efficient Numerical Analysis and Its Case Study (효율적 수치해석을 위한 오픈소스 프로그램 기반 해석 플랫폼 구축 및 사례 연구)

  • Park, Chan-Hee;Kim, Taehyun;Park, Eui-Seob;Jung, Yong-Bok;Bang, Eun-Seok
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.509-518
    • /
    • 2020
  • This study constructed a new simulation platform, including mesh generation process, numerical simulation, and post-processing for results analysis based on exploration data to perform real-scale numerical analysis considering the actual geological structure efficiently. To build the simulation platform, we applied for open-source programs. The source code is open to be available for code modification according to the researcher's needs and compatibility with various numerical simulation programs. First, a three-dimensional model(3D) is acquired based on the exploration data obtained using a drone. Then, the domain's mesh density was adjusted to an interpretable level using Blender, the free and open-source 3D creation suite. The next step is to create a 3D numerical model by creating a tetrahedral volume mesh inside the domain using Gmsh, a finite element mesh generation program. To use the mesh information obtained through Gmsh in a numerical simulation program, a converting process to conform to the program's mesh creation protocol is required. We applied a Python code for the procedure. After we completed the stability analysis, we have created various visualization of the study using ParaView, another open-source visualization and data analysis program. We successfully performed a preliminary stability analysis on the full-scale Dokdo model based on drone-acquired data to confirm the usefulness of the proposed platform. The proposed simulation platform in this study can be of various analysis processes in future research.

3D numerical modeling of impact wave induced by landslide using a multiphase flow model (다상흐름 모형을 이용한 산사태 유발 수면충격파 3차원 수치모의)

  • Kim, Byungjoo;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.943-953
    • /
    • 2021
  • The propagation of impact wave induced by landslide and debris flow occurred on the slope of lake, reservoir and bays is a three-dimensional natural phenomenon associated with strong interaction of debris flow and water flow in complex geometrical environments. We carried out 3D numerical modeling of such impact wave in a bay using a multiphase turbulence flow model and a rheology model for non-Newtonian debris flow. Numerical results are compared with previous experimental result to evaluate the performance of present numerical approach. The results underscore that the reasonable predictions of both thickness and speed of debris flow head penetrating below the water surface are crucial to accurately reproduce the maximum peak height and free surface profiles of impact wave. Two predictions computed using different initial debris flow thicknesses become different from the instant when the peaks of impact waves fall due to the gravity. Numerical modeling using relatively thick initial debris flow thickness appears to well reproduce the water surface profile of impact wave propagating across the bay as well as wave run-up on the opposite slope. The results show that the maximum run-up height on the opposite slope is not sensitive to the initial thickness of debris flows of same total volume. Meanwhile, appropriate rheology model for debris flow consisting of inviscid particle only should be employed to more accurately reproduce the debris flow propagating along the channel bottom.