• Title/Summary/Keyword: three dimensional shape

Search Result 1,471, Processing Time 0.026 seconds

A Study on the Application of a Drone-Based 3D Model for Wind Environment Prediction

  • Jang, Yeong Jae;Jo, Hyeon Jeong;Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.2
    • /
    • pp.93-101
    • /
    • 2021
  • Recently, with the urban redevelopment and the spread of the planned cities, there is increasing interest in the wind environment, which is related not only to design of buildings and landscaping but also to the comfortability of pedestrians. Numerical analysis for wind environment prediction is underway in many fields, such as dense areas of high-rise building or composition of the apartment complexes, a precisive 3D building model is essentially required in this process. Many studies conducted for wind environment analysis have typically used the method of creating a 3D model by utilizing the building layer included in the GIS (Geographic Information System) data. These data can easily and quickly observe the flow of atmosphere in a wide urban environment, but cannot be suitable for observing precisive flow of atmosphere, and in particular, the effect of a complicated structure of a single building on the flow of atmosphere cannot be calculated. Recently, drone photogrammetry has shown the advantage of being able to automatically perform building modeling based on a large number of images. In this study, we applied photogrammetry technology using a drone to evaluate the flow of atmosphere around two buildings located close to each other. Two 3D models were made into an automatic modeling technique and manual modeling technique. Auto-modeling technique is using an automatically generates a point cloud through photogrammetry and generating models through interpolation, and manual-modeling technique is a manually operated technique that individually generates 3D models based on point clouds. And then the flow of atmosphere for the two models was compared and analyzed. As a result, the wind environment of the two models showed a clear difference, and the model created by auto-modeling showed faster flow of atmosphere than the model created by manual modeling. Also in the case of the 3D mesh generated by auto-modeling showed the limitation of not proceeding an accurate analysis because the precise 3D shape was not reproduced in the closed area such as the porch of the building or the bridge between buildings.

Scientific Exploration of the Footprints in the Folktale: The Footprints of Munhojang, Changnyeong-gun, Gyeongsangnam-do, Korea (설화 속 발자국에 대한 과학적 탐색: 경남 창녕군 문호장 발자국)

  • Jung, Seung-Ho;Kim, TaeHyeong;Ahn, Jaehong
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.8
    • /
    • pp.49-59
    • /
    • 2021
  • Since ancient times, legends and tales have been handed down with a spirituality, shamanistic meaning, and imagination. Among many tales about people and animal footprints that are handed down in various parts of Korea, Changnyeong's 'Munhojang Footprint' is the first case in which the physical evidence(footprints) that the main character has left was identified as a dinosaur footprint. In this study, we performed a scientific analysis based on the basic data collection, distribution pattern of 'Munhojang Footprint', three-dimensional digital recording and visualization, as well as case analysis and humanitic review of footprints in tales and legends. The Munhojang Footprints has long been known as human footprints left in the natural rock due to its shape and preservation status. A new analysis that the Munhojang footprints (composed of 13 footprints) are dinosaur tracks shows social perceptions of the ancient people, characterized by the fear of supernatural beings and the limits of scientific interpretation. Through this scientific and humanistic exploration of Munhojang Footprint that are passed down from generation to generation as legends, pray for peace and well-being of the village through rituals and rituals every year, and have been preserved and managed as practical evidence, it is expected that traditional culture and natural heritage will be linked and mutual value will be enhanced.

Improvement in flow and noise performance of backward centrifugal fan by redesigning airfoil geometry (익형 형상 재설계를 통한 후향익 원심팬의 유동 및 소음성능 개선)

  • Jung, Minseung;Choi, Jinho;Ryu, Seo-Yoon;Cheong, Cheolung;Kim, Tae-hoon;Koo, Junhyo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.555-565
    • /
    • 2021
  • The goal of this study is to improve flow and noise performances of existing backward-curved blade centrifugal fan system used for circulating cold air in a refrigerator freezer by optimally designing airfoil shape. The unique characteristics of the system is to drive cold airflow with two volute tongues in combination with duct system in a back side of a refrigerator without scroll housing generally used in a typical centrifugal fan system. First, flow and noise performances of existing fan system were evaluated experimentally. A P-Q curve was obtained using a fan performance tester in the flow experiment, and noise spectrum was measured in an anechoic chamber in the noise experiment. Then, flow characteristics were numerically analyzed by solving the three-dimensional unsteady Navier-Stokes equations and noise analysis was performed by solving the Ffowcs Williams and Hawkins equation with input from the flow simulation results. The validity of numerical results was confirmed by comparing them with the measured ones. Based on the verified numerical method, blade inlet and outlet angles were optimized for maximum flow rate using the two-factor central composite design of the response surface method. Finally, the flow and noise performances of a prototype manufactured with the optimum design were experimentally evaluated, which showed the improvement in flow and noise performance.

Performance Assessment of Two Horizontal Shroud Tidal Current Energy Converter using Hydraulic Experiment (수리실험을 통한 수평 2열 쉬라우드 조류에너지 변환장치 성능평가)

  • Lee, Uk-Jae;Choi, Hyuk-Jin;Ko, Dong-Hui
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • In this study, the two horizontal shroud tidal current energy converter, which can generate power even under low flow speed conditions, was developed. In order to determine the shape of the shroud system, a three-dimensional numerical simulation test was conducted, and a 1/6 scale down model was made to perform a hydraulic model experiment. The hydraulic model experiment was performed under four flow conditions, and the flow speed, torque, and RPM were measured for each experimental case. As a result of the numerical simulation test, it was found that the flow speeds passing through the nozzle were increased by about 2~3 times in the cylinder, and when the extension ratio was 2:1, the highest flow speed was shown. In addition, it was found that the flow speeds increased 2.8 times when the diameter ratio between the nozzle and the cylinder was 1.5:1. Meanwhile, as a result of the hydraulic model experiment, it was found that when the tip speed ratio was between 1.75 and 2, the power coefficient was 0.32 to 0.34.

Large-view-volume Multi-view Ball-lens Display using Optical Module Array (광학 모듈 어레이를 이용한 넓은 시야 부피의 다시점 볼 렌즈 디스플레이)

  • Gunhee Lee;Daerak Heo;Jeonghyuk Park;Minwoo Jung;Joonku Hahn
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.79-89
    • /
    • 2023
  • A multi-view display is regarded as the most practical technology to provide a three-dimensional effect to a viewer because it can provide an appropriate viewpoint according to the observer's position. But, most multi-view displays with flat shapes have a disadvantage in that a viewer watches 3D images only within a limited front viewing angle. In this paper, we proposed a spherical display using a ball lens with spherical symmetry that provides perfect parallax by extending the viewing zone to 360 degrees. In the proposed system, each projection lens is designed to be packaged into a small modular array, and the module array is arranged in a spherical shape around a ball lens to provide vertical and horizontal parallax. Through the applied optical module, the image is formed in the center of the ball lens, and 3D contents are clearly imaged with the size of about 0.65 times the diameter of the ball lens when the viewer watches them within the viewing window. Therefore, the feasibility of a 360-degree full parallax display that overcomes the spherical aberration of a ball lens and provides a wide field of view is confirmed experimentally.

Dental Surgery Simulation Using Haptic Feedback Device (햅틱 피드백 장치를 이용한 치과 수술 시뮬레이션)

  • Yoon Sang Yeun;Sung Su Kyung;Shin Byeong Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.6
    • /
    • pp.275-284
    • /
    • 2023
  • Virtual reality simulations are used for education and training in various fields, and are especially widely used in the medical field recently. The education/training simulator consists of tactile/force feedback generation and image/sound output hardware that provides a sense similar to a doctor's treatment of a real patient using real surgical tools, and software that produces realistic images and tactile feedback. Existing simulators are complicated and expensive because they have to use various types of hardware to simulate various surgical instruments used during surgery. In this paper, we propose a dental surgical simulation system using a force feedback device and a morphable haptic controller. Haptic hardware determines whether the surgical tool collides with the surgical site and provides a sense of resistance and vibration. In particular, haptic controllers that can be deformed, such as length changes and bending, can express various senses felt depending on the shape of various surgical tools. When the user manipulates the haptic feedback device, events such as movement of the haptic feedback device or button clicks are delivered to the simulation system, resulting in interaction between dental surgical tools and oral internal models, and thus haptic feedback is delivered to the haptic feedback device. Using these basic techniques, we provide a realistic training experience of impacted wisdom tooth extraction surgery, a representative dental surgery technique, in a virtual environment represented by sophisticated three-dimensional models.

Butterfly Motif Design in Contemporary Fashion Collection - Focusing on VOGUE from 2019 to 2023 - (현대 패션컬렉션에 표현된 나비모티브 디자인 분석 -2019년~2023년 VOGUE를 중심으로-)

  • Shin, Jaeyoung;Huh, Jungsun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.379-386
    • /
    • 2024
  • The purpose of this study was to pay attention to the increase in the frequency of expression of butterflies and insects, whose decrease in the number of individuals is symbolized as a measure of environmental pollution, among the various motifs of nature as we go through the COVID-19, when we realized the importance of nature. The scope of this study was limited to fashion collection fashion show photos and interview articles of online for fashion collections from 2019 to 2023. As a result of the study, 185 butterfly motivation fashion design appeared, and digital printing techniques were the most used as a type of plane expression method. Along with this, techniques such as quilting, embroidery, and beading have appeared a lot as techniques to express the planar motif of butterflies. As for the three-dimensional expression types, 3D printing, laser cutting, corsage techniques, and draping techniques showed similar proportion. It can be seen that the expressed butterfly motif had more realistic description the shape of the butterfly as it was than abstract expressions. In conclusion, it can be seen that the butterfly motif fashion design over the past five years contains a stronger message about the environment than the butterfly motif fashion in the past. It was confirmed that it is a motif with a great symbolic meaning that can convey an eco-friendly message beyond just the morphological beauty and colorful design elements of the butterfly.

Effect of modifying the thickness of the plate at the level of the overlap length in the presence of bonding defects on the strength of an adhesive joint

  • Attout Boualem;Sidi Mohamed Medjdoub;Madani Kouider;Kaddouri Nadia;Elajrami Mohamed;Belhouari Mohamed;Amin Houari;Salah Amroune;R.D.S.G. Campilho
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.1
    • /
    • pp.83-103
    • /
    • 2024
  • Adhesive bonding is currently widely used in many industrial fields, particularly in the aeronautics sector. Despite its advantages over mechanical joints such as riveting and welding, adhesive bonding is mostly used for secondary structures due to its low peel strength; especially if it is simultaneously exposed to temperature and humidity; and often presence of bonding defects. In fact, during joint preparation, several types of defects can be introduced into the adhesive layer such as air bubbles, cavities, or cracks, which induce stress concentrations potentially leading to premature failure. Indeed, the presence of defects in the adhesive joint has a significant effect on adhesive stresses, which emphasizes the need for a good surface treatment. The research in this field is aimed at minimizing the stresses in the adhesive joint at its free edges by geometric modifications of the ovelapping part and/or by changing the nature of the substrates. In this study, the finite element method is used to describe the mechanical behavior of bonded joints. Thus, a three-dimensional model is made to analyze the effect of defects in the adhesive joint at areas of high stress concentrations. The analysis consists of estimating the different stresses in an adhesive joint between two 2024-T3 aluminum plates. Two types of single lap joints(SLJ) were analyzed: a standard SLJ and another modified by removing 0.2 mm of material from the thickness of one plate along the overlap length, taking into account several factors such as the applied load, shape, size and position of the defect. The obtained results clearly show that the presence of a bonding defect significantly affects stresses in the adhesive joint, which become important if the joint is subjected to a higher applied load. On the other hand, the geometric modification made to the plate considerably reduces the various stresses in the adhesive joint even in the presence of a bonding defect.

Monte-Carlo Simulations of Non-ergodic Solute Transport from Line Sources in Isotropic Mildly Heterogeneous Aquifers (불균질 등방 대수층 내 선형오염원으로부터 기원된 비에르고딕 용질 이동에 관한 몬테카를로 시뮬레이션)

  • Seo Byong-min
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.20-31
    • /
    • 2005
  • Three dimensional Monte-Carlo simulations of non-ergodic transport of a lion-reactive solute plume by steady-state groundwater flow under a uniform mean velocity in isotropic heterogeneous aquifers were conducted. The log-normally distributed hydraulic conductivity, K(x), is modeled as a random field. Significant efforts are made to reduce tile simulation uncertainties. Ensemble averages of the second spatial moments of the plume and plume centroid variances were simulated with 1600 Monte Carlo runs for three variances of log K, ${\sigma}_Y^2=0.09,\;0.23$, and 0.46, and three dimensionless lengths of line plume sources normal to the mean velocity. The simulated second spatial moment and the plume centroid variance in longitudinal direction fit well to the first order theoretical results while the simulated transverse moments are generally larger than the first order results. The first order theoretical results significantly underestimated the simulated dimensionless transverse moments for the aquifers of large ${\sigma}_Y^2$ and large dimensionless time. The ergodic condition for the second spatial moments is far from reaching in all cases simulated, and transport In transverse directions may reach ergodic condition much slower than that in longitudinal direction. The evolution of the contaminant transported in a heterogeneous aquifer is not affected by the shape of the initial plume but affected mainly by the degree of the heterogeneity and the size of the initial plume.

Impact of the Planning CT Scan Time on the Reflection of the Lung Tumor Motion (전산화단층촬영 주사시간(Scan Time)이 폐종양운동의 재현성에 미치는 영향 분석)

  • Kim Su Ssan;Ha Sung Whan;Choi Eun Kyung;Yi Byong Yong
    • Radiation Oncology Journal
    • /
    • v.22 no.1
    • /
    • pp.55-63
    • /
    • 2004
  • Purpose : To evaluate the reflection of tumor motion according to the planning CT scan time. Material and Methods : A model of N-shape, which moved aiong the longitudinal axis during the ventilation caused by a mechanical ventilator, was produced. The model was scanned by planning CT, while setting the relative CT scan time (T: CT scan time/ventilatory period) to 0.33, 0.50, 0.67, 0.75, 1.00, 1.337, and 1.537. In addition, three patients with non-small cell lung cancer who received stereotactic radiosurgery In the Department of Radiation Oncology, Asan Medical Center from 03/19/2002 to 05/21/2002 were scanned. Slow (10 Premier, Picker, scan time 2.0 seconds per slice) and fast CT scans (Lightspeed, GE Medical Systems, with a scan time of 0.8 second per slice) were peformed for each patient. The magnitude of reflected movement of the N-shaped model was evaluated by measuring the transverse length, which reflected the movement of the declined bar of the model at each slice. For patients' scans, all CT data sets were registered using a stereotactic body frame scale with the gross tumor volumes delineated in one CT image set. The volume and three-dimensional diameter of the gross tumor volume were measured and analyzed between the slow and fast CT scans. Results : The reflection degree of longitudinal movement of the model increased in proportion to the relative CT scan times below 1.00 7, but remained constant above 1.00 T Assuming the mean value of scanned transverse lengths with CT scan time 1.00 T to be $100\%$, CT scans with scan times of 0.33, 0.50, 0.57, and 0.75 T missed the tumor motion by 30, 27, 20, and $7.0\%$ respectively, Slow (scan time 2.0 sec) and Fast (scan time 0.8 sec) CT scans of three patients with longitudinal movement of 3, 5, and 10 mm measured by fluoroscopy revealed the increases in the diameter along the longitudinal axis Increased by 6.3, 17, and $23\%$ in the slow CT scans. Conculsion : As the relative CT scan time increased, the reflection of the respiratory tumor movement on planning CT also Increased, but remained constant with relative CT scan times above 1.00 T When setting the planning CT scan time above one respiration period (>1.00 T), only the set-up margin is needed to delineate the planning target volume. Therefore, therapeutic ratio can be increased by reducing the radiation dose delivered to normal lung tissue.