• Title/Summary/Keyword: three dimensional motion

Search Result 1,020, Processing Time 0.027 seconds

Dynamic soil-structure interaction studies on 275m tall industrial chimney with openings

  • Jayalekshmi, B.R.;Thomas, Ansu;Shivashankar, R.
    • Earthquakes and Structures
    • /
    • v.7 no.2
    • /
    • pp.233-250
    • /
    • 2014
  • In this paper, a three dimensional soil-structure interaction (SSI) is numerically simulated using finite element method in order to analyse the foundation moments in annular raft of tall slender chimney structures incorporating the effect of openings in the structure and the effect of soil flexibility, when the structure-soil system is subjected to El Centro (1940) ground motion in time domain. The transient dynamic analysis is carried out using LS-DYNA software. The linear ground response analysis program ProShake has been adopted for obtaining the ground level excitation for different soil conditions, given the rock level excitation. The radial and tangential bending moments of annular raft foundation obtained from this SSI analysis have been compared with those obtained from conventional method according to the Indian standard code of practice, IS 11089:1984. It is observed that tangential and radial moments increase with the increase in flexibility of soil. The analysis results show that the natural frequency of chimney decreases with increase in supporting soil flexibility. Structural responses increase when the openings in the structure are also considered. The purpose of this paper is to propose the need for an accurate evaluation of the soilstructure interaction forces which govern the structural response.

HALF-TURN ROTATION OF A POLARITY INVERSION LINE AND ASSOCIATED QUADRUPOLAR-LIKE STRUCTURE IN THE SUN

  • Magara, Tetsuya;An, Jun-Mo;Lee, Hwan-Hee;Kang, Ji-Hye
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.5
    • /
    • pp.143-150
    • /
    • 2011
  • This paper reports a characteristic motion of a polarity inversion line (PIL) formed at the solar surface, which is newly found by performing a three-dimensional magnetohydrodynamic simulation of flux emergence in the Sun. A magnetic flux tube composed of twisted field lines is assumed to emerge below the surface, forming a bipolar region with a PIL at the surface. A key finding is the successive half-turn rotation of the PIL, leading to the formation of a quadrupolar-like region at the surface and a magnetic configuration in the corona; this configuration is reminiscent of, but essentially different from the so-called inverse-polarity configuration of a filament magnetic field. We discuss a physical mechanism for producing the half-turn rotation of a PIL, which gives new insights into the magnetic structure formed via flux emergence. This presents a reasonable explanation of the configuration of a filament magnetic field suggested by observations.

Gait Study on the Normal and ACL Deficient Patients After Ligament Reconstruction Surgery Using Chaos Analysis Method (전방십자인대 재건수술 환자와 정상인의 보행 연구)

  • Ko Jae-Hun;Moon Byung-Young;Suh Jeung-Tak;Son Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.435-441
    • /
    • 2006
  • The anterior cruciate ligament(ACL) is an important stabilizer of knee joint. The ACL injury of knee is common and a serious ACL injury leads to ligament reconstruction surgery. Gait analysis is essential to identify knee condition of patients who display abnormal gait. The purpose of this study is to evaluate and classify knee condition of ACL deficient patients using a nonlinear dynamic method. The nonlinear method focuses on understanding how variations in the gait pattern change over time. The experiments were carried out for 17 subjects(l2 healthy subjects and five subjects with unilateral deficiency) walking on a motorized treadmill for 100 seconds. Three dimensional kinematics of the lower extremity were collected by using four cameras and KWON 3D motion analysis system. The largest Lyapunov exponent calculated from knee joint flexion-extension time series was used to quantify knee stability. The results revealed the difference between healthy subjects and patients. The deficient knee was significantly unstable compared with the contralateral knee. This study suggests an evaluation scheme of the severity of injury and the level of recovery. The proposed Lyapunov exponent can be used in rehabilitation and diagnosis of recoverable patients.

A Study on the Dynamic Behavior of Vertical Shaft in Multi-Layered Soil (다층지반에서의 수직구 동적 거동 분석)

  • Kim, Yong Min;Jeong, Sang Seom;Kim, Kyoung Yul;Lee, Yong Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4C
    • /
    • pp.109-116
    • /
    • 2011
  • In this study, dynamic response of a vertical shaft subjected to seismic loads was evaluated by three-dimensional Finite Element (FE) approach. The emphasis was on quantifying the ground conditions, input motions and direction of motions. A series of parametric analyses were carried out. From the results of FE analysis, more than 1.7 times increase in shear force and bending moment is obtained when the stiff layer was thinker than the soft layer. And all of the maximum values were occurred near the interface between the soil layers. The dynamic behavior of vertical shaft was significantly influenced by the different frequencies of the input motion, and normalized acceleration of surrounding soil was 3 times larger than vertical shaft.

The Geometrical Analysis of Vibration Modes and Frequency Responses of an Elastically Suspended Optical Disc Drive (탄성적으로 지지된 광디스크 드라이버의 진동모드와 주파수 응답의 기하적 해석)

  • Dan, Byeong-Ju;Choe, Yong-Je
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.362-369
    • /
    • 2000
  • Via screw theory, a vibration mode can be geometrically interpreted as a pure rotation about the vibration center in a plane and as a twisting motion on a screw in a three dimensional space. In thi s paper, applying the conditions that can be used to diagonalize the stiffness matrix by a parallel axis congruence transformation, the vibration modes and frequency response of an elastically suspended optical disc drive have been analyzed. It is first shown that the system has one plane of symmetry, which enables one to decouple the complicated vibration modes into two sets of modes independent of each other. Having obtained the analytical solutions for the axes of vibrations, the frequency response for a given applied input force has been demonstrated. Most importantly, it has been explained that this research result could be used in the synthesis process of a linear vibration system in order to improve the frequency response.

Numerical Investigation of Aerodynamic Interference in Complete Helicopter Configurations

  • Lee, Hee-Dong;Yu, Dong-Ok;Kwon, Oh-Joon;Kang, Hee-Jung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.190-199
    • /
    • 2011
  • Unsteady flow simulations of complete helicopter configurations were conducted, and the flow fields and the aerodynamic interferences between the main rotor, fuselage, and tail rotor were investigated. For these simulations, a three-dimensional flow solver based on unstructured meshes was used, coupled with an overset mesh technique to handle relative motion among those components. To validate the flow solver, calculations were made for a UH-60A complete helicopter configuration at high-speed and low-speed forward flight conditions, and the unsteady airloads on the main rotor blade were compared to available flight test data and other calculated results. The results showed that the fuselage changed the rotor inflow distribution in the main rotor blade airloads. Such unsteady vibratory airloads were produced on the fuselage, which were nearly in-phase with the blade passage over the fuselage. The flow solver was then applied to the simulation of a generic complete helicopter configuration at various flight conditions, and the results were compared with those of the CAMRAD-II comprehensive analysis code. It was found that the main rotor blades strongly interact with a pair of disk-vortices at the outer edge of the rotor disk plane, which leads to high pulse airloads on the blade, and these airloads behave differently depending on the specific flight condition.

Aerodynamic Characteristics of a Three-Dimensional Wing in Heave Oscillation (히브진동하는 3차원 날개 공력특성)

  • Chin, Chul-Soo;Kim, Tae-Wan;Lee, Hyoung-Wook;Han, Cheol-Heui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.10
    • /
    • pp.905-911
    • /
    • 2011
  • With the progress of micro actuator technology, studies on the development of micro air flapping wing vehicles are actively undergoing. In the present study, the changes of both lift and thrust characteristics of the wings are investigated using a boundary element method. Lift of the heaving wing is not generated when the wing is beating with smaller frequencies than 1 Hz. Thrust increases with amplitude and frequency. As the wing's taper and aspect ratios increase, both lift and thrust also increase. Results on the pitching oscillation and flapping motion will be included in the future work.

The Relationship between the Distance and Release Parameters in Korean Female Javelin Throwers (한국 여자 창던지기 선수들의 기록과 릴리즈 요인과의 관계)

  • Kim, Tae-Sam;Ryu, Ji-Seon;Lee, Soon-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.2
    • /
    • pp.131-140
    • /
    • 2012
  • This study was to investigate the relationship between the distance and projection factors, angle factors of javelin in women's javelin throwing. The data were collected in the 2011 National Sports Festivals for 11 players. Three-Dimensional motion analysis using a system of 4 video cameras at a sampling frequency of 60 fields/s was performed for this study. The factors of release conditions calculated using Matlab 2009a program. The statical analysis on the records(n=42) included mean and standard deviation of the mean(SD), Pearson's product moment correlation coefficient(SPSS Version 16.0 for Windows). There was a statistically significant positive relationship between the records and release velocity(r=.866, p<.01), height(r=.433, p<.01) and height rate(r=.340, p<.05). The attitude angle, release angle, and attack angle showed not a statistically significant relationship between the records. The medial-lateral tilt angle of javelin showed not a statistically significant relationship between the records, but the yaw angle of javelin(r=.549, p<.01) showed a statistically significant positive relationship between the records.

Numerical Wear Analysis of a Three-dimensional Rough Surface (수치적 방법을 이용한 3차원 거친 표면의 마모 해석)

  • Kim, Yunji;Suh, Junho;Kim, Bongjun;Yu, Yonghun
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.232-243
    • /
    • 2020
  • It is essential to predict the amount of wear and surface parameters for a surface where relative motion occurs. In the asperity-based model for wear prediction, only the average contact pressure can be obtained. Hence, the accuracy of wear analysis is poor. In this study, DC-FFT is used to obtain the pressure of each node, and wear analysis is performed by considering the effect of the pressure gradient. The numerical surface generation method is used to create Gaussian, negatively skewed, and positively skewed surfaces for wear analysis. The spatial and height distributions of each surface are analyzed to confirm the effectiveness of the generated surface. Furthermore, wear analysis is performed using DC-FFT and Archard's wear formula. After analysis, it is confirmed that all peaks are removed and only valleys remain on the surface. The RMS roughness and Sk continue to decrease and Ku increases as the cycle progresses. It is observed that the surface parameters are significantly affected by the radius of curvature of the asperity. This analysis method is more accurate than the existing average wear and truncation models because the change in asperity shape during the wear process is reflected in detail.

Correct Posture Guidance System using 3-axis Acceleration Sensor for Scoliosis Patient (3축 가속도 센서를 이용한 자세 교정 유도 시스템)

  • An, Yang-Soo;Kim, Keo-Sik;Seo, Jeong-Hwan;Song, Chul-Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.220-224
    • /
    • 2010
  • In this study, we designed a device for consecutively observing position, utilizing 3-axises acceleration sensor. This method offer to check his or her wrong position and developed could to help derived a position appliance. And, we developed a Cobb's angle value in three dimensional using 3-axises acceleration sensor. A proposed device with integrated accelerometers, which can detect postural changes in terms of curvature variation of the spine in the sagittal and coronal planes, has been developed with intention to facilitate posture training. The proposed device was evaluated with 3 normal subjects daily activities. We evaluated the performance of our designed device as calculating the correlation coefficients and mean errors between the angle measured by an electro-goniometer and that estimated by a gravity accelerometer and verified the accuracy and sensitivity. The results showed that the angle obtained from the proposed device revealed a linear characteristic at the range of $\pm60^{\circ}$(correlation coefficient 0.99, error range $\pm2^{\circ}$). We demonstrated that our device could detect the changes of the motion in upper trunk accurately. Also, our device showed good potential for treatment of the patients with scoliosis and prevention of the unbalance position during a daily life.