• 제목/요약/키워드: three dimensional motion

검색결과 1,015건 처리시간 0.028초

밀링작업에서 보조장치를 이용한 자유곡면의 표면거칠기 향상에 관한 연구 (A Study on the Improvement of Sculptured Surface Topography in Milling Operation by using tertiary Motion Attachment)

  • 홍민성
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 춘계학술대회 논문집
    • /
    • pp.149-154
    • /
    • 1996
  • The applicability of a new method, termed the whirling motion concept, for the iprovement of the surface finish in milling three-dimensional sculptured surfaces has been investigated. A method for implementing this concept on conventional NC machines that utilize a suitably configured attachment has been proposed. The tool path equation for the ball-end milling process, based on the Surface-Shaping system, has been obtained. Both results of the computer simulation and the experiment verified the computer simulation and the experiment verified the proposed approach.

  • PDF

유동-구조상관(FSI) 3차원 측정시스템에 의한 부유식 실린더 연동운동해석 (FSI Analysis on a Floating Cylinder by 3D Flow-Structure Interaction (FSI) Measurement System)

  • 도덕희;상지웅;황태규;편용범;백태실
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1574-1579
    • /
    • 2004
  • A simultaneous measurement system that can analyze the flow-structure interactions(FSI) has been constructed and analyses on the flow field and the motion field of a floating cylinder was made. The three-dimensional vector fields around the cylinder are measured by 3D-PTV technique while the motion of the cylinder forced by the flow field is measured simultaneously with a newly developed motion tracking algorithm(bidirectional tracking algorithm). The cylinder is pendant in the working fluid of a water channel and the surface of the working fluid is forced sinusoidal to make the cylinder bounced. The interaction between the flow fields and the cylinder motion is examined quantitatively.

  • PDF

다공탄성체 척추운동분절 유한요소 모델에서 추간판의 변성이 충격 거동에 미치는 영향 해석 (Analysis of Impact Response in a Poroelastic Spinal Motion Segment FE Model according to the Disc Degeneration)

  • 김영은;박덕용
    • 한국정밀공학회지
    • /
    • 제20권11호
    • /
    • pp.188-193
    • /
    • 2003
  • To predict changes in biomechanical parameters such as intradiscal pressure, and the shock absorbing mechanism in the spinal motion segment under different impact duration/loading rates, a three dimensional L3/L4 motion segment finite element model was modified to incorporate the poroelastic properties of the motion segment. The results were analyzed under variable impact duration for normal and degenerated discs. For short impact duration and a given maximum compressive force, relatively high cancellous pore pressure was generated as compared with a case of long impact duration, although the amount of impulse was increased. In contrast relatively constant pore pressure was generated in the nucleus. Disc degeneration increased pore pressure in the disc and decreased pore pressure in the cancellous core, which is more vulnerable to compressive fracture compared with intact case.

ISSC-TLP의 운동응답 및 변동장력에 미치는 다방향 불규칙파의 영향 (Effects of the Multi-directional Irregular Waves on the Motion Responses and Tension Variations of ISSC-TLP)

  • 이창호
    • 한국해양공학회지
    • /
    • 제20권4호
    • /
    • pp.70-75
    • /
    • 2006
  • A numerical procedure is described for estimating the effects of the multi-directional irregular waves on the motion responses and tension variations of the ISSC-TLP. The numerical approach is based on a three-dimensional source distribution method and a spectral analysis technique of directional waves. The spectral description for the linear system of ISSC-TLP in the frequency domain is sufficient to completely define the motion responses and tension variations. This is because both the wave inputs and responses are stationary Gaussian random processes, of which the statistical properties in the amplitude domain are well known. The numerical results for the linear motion responses and tension variations in regular waves are compared with the experimental and numerical ones, which are obtained in the literature. The results of comparison confirmed the validity of the proposed approach.

FEM 3차원 모델을 이용한 인공관절 대퇴 Stem 경계면의 미세운동 분석 (A Three-Dimensional Finite Element Study of Interface Micromotion in a Non-Cement Total Hip stem)

  • 김성곤;최형연;채수원
    • 대한의용생체공학회:의공학회지
    • /
    • 제17권1호
    • /
    • pp.61-70
    • /
    • 1996
  • In cementless total hip arthroplasty(THA), an initial stability of the femoral component is mandatory to achieve bony inyowth and secondary long term fixation. Primary stability of the femoral component can be obtained by minimizing the magnitude of relative micromotions at bone stem interface. An accurate evaluation of interf'ace micromotion and stress/strain fields in the bone-implant system may be relevant for better understanding of clinical situations and improving THA design. Recently finite element method(FEM) was introduced in'orthopaedic research field due to its unique capacity to evaluate stress in structure of complex shape, loading and material behavior. The authors developed the 3-dimensional finite element model of proximal femur with $Multilock^{TM}$ stem of 1179 blick elements to analyse the micromotions and mechanical behaviors at the bone-stem inteface in early post-operative period for the load simulating single leg stance. The results indicates that the values of relative motion for this well fit stem were $150{\mu}m$ in maximum $82{\mu}m$ in minimum and the largest relative motion was developed in medial region of Proximal femur and in anterior-posterior direction. The motion in the proximal bone was much greater than in the distal bone and the stress pattern showed high stress concentration on the cortex near the tip of the stem. These findings indicate that the loading on the hip joint in the early postoperative situation before achieving bony ingrowth could produce large micromotion of $150{\mu}m$ and clinicaly non-cemented THA patient should not be allowed weight bearing strictly early in the postoperative period.

  • PDF

체부 정위방사선치료 시 호흡운동 감소를 위한 복부 압박기구 개발 및 유용성 평가 (Development of Abdominal Compression Belt and Evaluation of the Efficiency for the Reduction of Respiratory Motion in SBRT)

  • 황선붕;김일환;김웅;임형서;강진묵;정성민;김기환;이아람;조유라
    • 대한방사선치료학회지
    • /
    • 제23권1호
    • /
    • pp.13-19
    • /
    • 2011
  • 목 적: 체부 정위방사선치료 시 치료 효과 향상을 위해서는 병소 부위의 정확한 위치 파악과 함께 호흡에 의한 종양의 움직임을 최소화하는 것이 필수적이다. 이에 본 연구에서는 기존에 자체 개발하여 사용 중인 호흡운동 감소기구를 보다 사용이 편리하고 효과적이도록 개선하여, 체부 정위방사선치료에 있어서 임상 적용의 유용성을 평가하였다. 대상 및 방법: 자체 개발하여 사용 중이던 기존 호흡운동 감소기구의 장단점을 분석하여 재현성과 사용 정확도를 개선하였다. 그리고 개선된 호흡운동 감소기구를 체부 정위방사선치료에 활용하기 위한 유용성 평가 방법으로 첫째, 8명의 폐종양 환자에 대해 들숨(inhalation)과 날숨(exhalation) 상태에서 획득한 고속(spiral) 전산화단층촬영 영상을 통해, 호흡에 따른 종양 움직임을 3차원적으로 정량 분석하였다. 둘째, 선량 평가를 위해 EBT2 필름(Gafchromic, ISP, USA)을 장착할 수 있는 폴리에틸렌 팬텀과 3차원적 종양 움직임을 재현하기 위한 2축의 직교좌표 로봇(Cartesian Robot-2Axis, FARA RCM4H, Samsung Mechatronics, Korea)을 제작하였다. 그리고 전산화단층촬영에서 획득한 결과를 바탕으로 호흡운동을 재현하여, 등선량 곡선 및 2차원 등선량 프로파일을 분석하였다. 결 과: 벨크로 벨트로 제작된 사용이 편리하고 재현성이 우수한 호흡운동 감소기구를 개발하였다. 전산화단층촬영 영상으로 분석한 폐암환자의 호흡에 따른 3차원적인 종양의 움직임은 좌우, 전후, 두미측 방향에 따라 평균 3.2 mm, 4.3 mm, 13.0 mm로 나타났다. 팬텀과 직교좌표 로봇을 이용한 호흡에 의한 선량분포 특성변화의 결과로는, 치료계획 선량보다 방사선을 적게 받은 영역은 두미측 방향으로 각각 8.0%와 16.8%, 좌우측 방향으로 각각 8.1%와 10.9%로 후미측 방향의 선량 왜곡이 가장 크게 나타났고, 길이는 평균 4.2 mm이었다. 호흡주기에 따른 선량 왜곡의 변화는 크게 나타나지 않았다. 결 론: 본 연구를 통해 장기의 움직임을 최소화할 수 있는 사용이 편리하고 효과적인 호흡운동 감소기구를 개발하였다. 개발된 기구를 사용할 경우 평균 6 mm 정도의 CTV-PTV 마진을 사용하면 호흡에 따른 과소선량(underdose)을 극복할 수 있을 것으로 결과를 통해 확인하였다. 이로서 개발된 호흡운동 감소기구는 체부 정위방사선치료에 있어서 호흡동조 방법을 병행할 수 있는, 임상 적용이 용이한 효과적인 보조기구로 활용할 수 있을 것으로 사료된다.

  • PDF

Validity and Reliability of an Inertial Measurement Unit-Based 3D Angular Measurement of Shoulder Joint Motion

  • Yoon, Tae-Lim
    • The Journal of Korean Physical Therapy
    • /
    • 제29권3호
    • /
    • pp.145-151
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the validity and reliability of the measurement of shoulder joint motions using an inertial measurement unit (IMU). Methods: For this study, 33 participants (32 females and 1 male) were recruited. The subjects were passively positioned with the shoulder placed at specific angles using a goniometer (shoulder flexion $0^{\circ}-170^{\circ}$, abduction $0^{\circ}-170^{\circ}$, external rotation $0^{\circ}-90^{\circ}$, and internal rotation $0^{\circ}-60^{\circ}$ angles). Kinematic data on the shoulder joints were simultaneously obtained using IMU three-dimensional (3D) angular measurement (MyoMotion) and photographic measurement. Test-retest reliability and concurrent validity were examined. Results: The MyoMotion system provided good to very good relative reliability with small standard error of measurement (SEM) and minimal detectable change (MDC) values from all three planes. It also presented acceptable validity, except for some of shoulder flexion, shoulder external rotation, and shoulder abduction. There was a trend for the shoulder joint measurements to be underestimated using the IMU 3D angular measurement system compared to the goniometer and photo methods in all planes. Conclusion: The IMU 3D angular measurement provided a reliable measurement and presented acceptable validity. However, it showed relatively low accuracy in some shoulder positions. Therefore, using the MyoMotion measurement system to assess shoulder joint angles would be recommended only with careful consideration and supervision in all situations.

고관절 내외회전 가동범위 검사에 대한 범용플라스틱 측각기의 동시타당도와 임상적 유용성 (Concurrent Validity and Clinical Usefulness of Universal Plastic Goniometer for Hip Internal and External Rotation Range Measurement)

  • 김용욱
    • 대한물리의학회지
    • /
    • 제13권1호
    • /
    • pp.99-105
    • /
    • 2018
  • PURPOSE: The aim of this study was to evaluate the concurrent validity and clinical usefulness of the universal plastic goniometer to measure the range of motion of the internal and external rotation of the hip joint using the three dimensional motion analysis which can analyze the joints and segment movements in the most objective and quantitative method. METHODS: Clinical and kinematic data were collected from thirty individuals using a universal plastic goniometer and a ten camera motion analysis system. Passive hip rotation range was obtained three trials for left and right hip joints using two measure methods simultaneously. RESULTS: There were significant differences between all matching measures of the two measures of internal and external rotation of the hip joint (p<.05). The relationship between the two tests for all measurements of the internal and external rotation of the hip was statistically significant with correlation coefficient form r=.87 to .96. (p<.01). CONCLUSION: Clinical measurement of the internal and external rotation of the hip using a universal plastic goniometer is effective to assess the hip condition. However, application of universal plastic goniometer requires careful attention in more accurate evaluation and research verification of the internal and external rotation of hip joint.

3D Simulation of Earthquake Ground Motion Using Locally Variable Time-Step Finite-Difference Method

  • Kang, Tae-Seob;Baag, Chang-Eob
    • IUGG한국위원회:학술대회논문집
    • /
    • IUGG한국위원회 2003년도 정기총회 및 학술발표회
    • /
    • pp.18-18
    • /
    • 2003
  • Three-dimensional finite-difference simulation of earthquake ground motion is performed using a locally variable time-step (LVTS) scheme matching with discontinuous grids. Discontinuous grids in three directions and extension of the discontinuous grids' boundary to the free-surface in the LVTS scheme minimize the cost of both the computational memory and the CPU time for models like the localized sedimentary basin. A simplified model of sedimentary basin is dealt to show the feasibility and efficiency of the LVTS scheme. The basin parameters are examined to understand the main characteristics on ground-motion response in the basin. The results show that the seismic energy is concentrated on a marginal area of the basin far from the source. This focusing effect is mainly due to the constructive interference of the direct S-wave with the basin-edge induced surface waves. The ground-motion amplification over the deepest part of the basin is relatively lower than that above the shallow basin edge. Therefore the ground-motion amplification may be more related to the source azimuth or the direction of the incident waves into the basin rather than the depth of it.

  • PDF

Reference-Pulse 방식 3축 동시제어 PC-NC 밀링 시스템 개발에 관한 연구 (Development of a Reference-Pulse Type 3-Axis Simultaneously Controlled PC-NC Milling System)

  • 양민양;홍원표
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.197-203
    • /
    • 1999
  • Increasing demands on precision machining have necessitated the tool to move not only position error as small as possible, but also with smoothly varying feedrates. Because of the lack of accurate and efficient algorithms for generation of 3-dimensional lines and circles, a full accomlishment for available machine tool resolution is generally unavailable. In this paper, a reference-pulse type 3-axis PC_NC milling system is developed for the precision machining of complex shapes in 3-dimensional space. Three AC servomotors are used as the actuator instead of the hand wheel to operate a 3-axis milling machine under the same mechanical structure. A PC is used to handle the control signal calculation for various types of motion command. To achieve the synchronous 3-axis motion, a real-time reference-pulse 3-dimensional linear and circular interpolator based on the intersection criteria is developed in software. The performance test via computer simulation and actual machining have shown that the PC-NC milling system is useful for the machining of arbitrary lines and circles in 3-dimensional space.

  • PDF