• Title/Summary/Keyword: three dimensional motion

검색결과 1,015건 처리시간 0.026초

Three-Dimensional Wave Control and Dynamic Response of Floating Breakwater Moored by Piers (말뚝계류된 부방파제의 공간파랑제어 및 동적거동에 관한 연구)

  • 김도삼;윤희면
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • 제14권3호
    • /
    • pp.183-191
    • /
    • 2002
  • In general, the salient features of the floating breakwater have excellent regulation of sea-water keeping the marine always clean, up and down free movement with the incoming and outgoing tides, capable of being installed without considering the geological condition of sea-bed at any water depth. This study discusses the three dimensional wave transformation of the floating breakwater moored by piers, and its dynamic response numerically. Numerical method is based on the boundary integral method and eigenfunction expansion method. It is known that pier mooring system has higher absorption of wave energy than the chain mooring system. Pier mooring system permit only vertical motion (heaving motion) of floating breakwater, other motions restricted. It is assumed in the present study that a resistant force as friction between piers and floating pontoon is not applied far the vertical motion of the floating breakwater. According to the numerical results, draft and width of the floating breakwater affect on the wave transformations greatly, and incident wave of long period is well transmitted to the rear of the floating breakwater, And the vertical motion come to be large for the short wave period.

Three-dimensional kinematic motion analysis of door handling task in people with mild and moderate stroke

  • Lee, Jung Ah;Kim, Eun Joo;Hwang, Pil Woo;Park, Han Ram;Bae, Jae Hyuk;Kim, Jae Nam
    • Physical Therapy Rehabilitation Science
    • /
    • 제5권3호
    • /
    • pp.143-148
    • /
    • 2016
  • Objective: This study aimed to quantify one of the useful upper extremity movements to evaluate motor control abilities between the groups of people with mild and moderate arm impairments performing a door handling task. Design: Cross-sectional study. Methods: Twenty-one healthy participants and twenty-one persons with chronic stroke (9 mild stroke and 12 moderate stroke) were recruited for this study. Stroke participants were divided into 2 groups based on Fugle-Meyer Assessment scores of 58-65 (mild arm) and 38-57 (moderate arm). All they performed door handling task including the pronation and supination phases 3 times. We measured some movement factors which were reaction time, movement time, hand of peak velocity, hand of movement units to perform door handling task using the three-dimensional motion analysis. Results: The majority of kinematic variables showed significant differences among study groups (p<0.05). The reaction time, total and phase of movement time, hand of peak velocity, the number of movement units discriminated between healthy participants and persons with moderate upper limb stroke (p<0.05). In addition, reaction time, total and phase of movement time, the number of movement units discriminated between those with moderate and mild upper limbs of stroke patients (p<0.05). Conclusions: Three-dimensional kinematic motion analysis in this study was a useful tool for assessing the upper extremity function in different subgroups of people with stroke during the door handling task. These kinematic variables may help clinicians understand the arm movements in door handling task and consist of discriminative therapeutic interventions for stroke patients on upper extremity rehabilitation.

Assessment of discomfort in elbow motion from driver posture (운전자 자세에 따른 팔꿈치 동작의 불편도 평가)

  • Tak, Tae-Oh;Lee, Pyoung-Rim
    • Journal of Industrial Technology
    • /
    • 제21권B호
    • /
    • pp.265-272
    • /
    • 2001
  • The human arm is modeled by three rigid bodies(the upper arm, the forearm and the hand)with seven degree of freedom(three in the shoulder, two in the elbow and two in the wrist). The objective of this work is to present a method to determine the three-dimensional kinematics of the human elbow joint using a magnetic tracking device. Euler angle were used to determine the elbow flexion-extension, and the pronation-supination. The elbow motion for the various driving conditions is measured through the driving test using a simulator. Discomfort levels of elbow joint motions were obtained as discomfort functions, which were based on subjects' perceived discomfort level estimated by magnitude estimation. The results showed that the discomfort posture of elbow joint motions occurred in the driving motion.

  • PDF

Dynamics in Carom and Three Cushion Billiards

  • Han Inhwan
    • Journal of Mechanical Science and Technology
    • /
    • 제19권4호
    • /
    • pp.976-984
    • /
    • 2005
  • This paper presents the analysis results of dynamics in the billiards game within the frame­work of rigid-body mechanics and a numerical simulation program. The friction exists between the ball and the table bed as well as between the ball and the rail. There are three parts in the dynamic behavior of the ball on the table bed; motion of the ball on the table bed, collision between balls, and collision between the ball and the cushion. During the development of the simulation program, the dynamics problems such as rolling motion and three-dimensional frictional impact motion have been analyzed in detail. The theoretical issues are implemented into a viable graphic simulation program and its efficacy is demonstrated through the experi­mental validation of the billiards game. The resulting analysis results are verified quantitatively and qualitatively using high-speed video camera. Through the experimental tests, it was found that the physical parameters such as coefficients of restitution and friction vary according to the motion variables and corresponding empirical formulations were developed. The simulation and experimental results agree well.

Biomechanical Analysis of a Bowling Swing (볼링 투구동작의 운동역학적 연구)

  • Lee, Hae-Myeong;Lee, Sang-Cheol;Lee, Hae-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • 제16권3호
    • /
    • pp.53-63
    • /
    • 2006
  • The general objective of this study was to investigate biomechanical characteristics of bowling swing using three-dimensional cinematography. This study focused specifically on movements of the upper body segments during a bowling swing. Eight elite female bowling players participated in this study. Subjects performed bowling swing and their performance was sampled at 60 frame/sec using two high-speed video cameras with a synchronizer. After digitizing images from two cameras, the two-dimensional coordinates were used to produce three-dimensional coordinates of the 12 body segments (20 joint reference makers). The obtained three-dimensional coordinates were fed to a custom-written kinematic and kinetic analyses program (LabView 6.1, National Instrument, Austin, TX, USA). The analyses determined the linear and angular kinematic variables of the body segments with which joint force and torque of the lower and upper trunks and the shoulder were estimated based on the Newton-Euler equations. It was found that during the bowling swing the peak linear velocities of the body segments were reached in sequence the trunk, the shoulder, the elbow, the wrist, and the bowl. This result indicates that linear momentum of the lower body and the trunk transmits to the arm segment during the bowling swing. The joint torques of the torso and the arm occurred almost simultaneously, indicating that bowling swing seem to be a push-like motion, rather than a proximal-distal sequence motion in which many of throwing motions are categorized. The ultimate objective of the bowling swing is to release a heavy-weight bowl with power and consistency. Therefore, the bowling swing observed in this study well agrees with that bowlers use the stepping to increase the linear velocity of the bowl, the simple pendulum system and the push-like segmental motion in the torso and the arm segment to enhance the power at the release of the bowl.

Comparative Study on the Radiation Techniques for the Problem of Floating Body Motion with Forward Speed (전진 속도를 가지는 부유체 운동 문제에 대한 방사기법 비교 연구)

  • Oh, Seunghoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • 제56권5호
    • /
    • pp.396-409
    • /
    • 2019
  • In this paper, a comparative study on the radiation techniques for the motion analysis of the three dimensional floating structure with the forward speed was carried out. The Sommerfeld radiation condition, the damping technique, and the point shift technique were used for the comparative study. Radiated wave patterns and hydrodynamic coefficients of the heave motion of floating structure with the forward speed were compared and analyzed. The characteristics and limitations of each radiation technique were analyzed through the calculation results. To overcome the limitations of conventional radiation techniques, the hybrid radiation technique combining the Sommerfeld radiation condition with the damping technique was proposed. It is confirmed that the proposed method, the Hybrid radiation technique, improves the limitation of the speed range and the dissipation of the wave of the conventional radiation technique. The motion analysis code of the three dimensional floating structure with the forward speed based on the Rankine source method with hybrid radiation technique was developed. In order to validate the developed code, hydrodynamic analyses were carried and compared with published experiments.

Substantivalism and Relationism in the 4 Dimensional Interpretation of Newtonian Space-Time (뉴턴 시공간의 4차원 해석에서의 실체론과 관계론 간의 논쟁)

  • Yang, Kyoung-Eun
    • Journal for History of Mathematics
    • /
    • 제30권2호
    • /
    • pp.87-100
    • /
    • 2017
  • The ontological status of Newtonian space-time has been debated under the name of substantivalism-relationism controversy. The debates between the two parties are concerned with the nature of existence of space-time. Substantivalism maintains that the points of space-time have existence analogous to material substance. Relationism claims that space-time should be understood as the framework of possible spatio-temporal relations between bodies. Newtonian space is considered as a three dimensional entity in accordance with our geometric common sense. Yet given that the concept of motion is defined as the change of position throughout time, it is possible to interpret space-time as a 4 dimensional entity. In this essay, substantivalist-relationist debate is considered within the context of non-relativistic 4 dimensional space-time theory. This essay attempts to clarify the dispute over the ontology of space-time by elucidating the relationship between the ontology of space-time, motion, and space-time symmetry.

Analysis on Stable Grasping based on Three-dimensional Acceleration Convex Polytope for Multi-fingered Robot (3차원 Acceleration Convex Polytope를 기반으로 한 로봇 손의 안정한 파지 분석)

  • Jang, Myeong-Eon;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제15권1호
    • /
    • pp.99-104
    • /
    • 2009
  • This article describes the analysis of stable grasping for multi-fingered robot. An analysis method of stable grasping, which is based on the three-dimensional acceleration convex polytope, is proposed. This method is derived from combining dynamic equations governing object motion and robot motion, force relationship and acceleration relationship between robot fingers and object's gravity center through contact condition, and constraint equations for satisfying no-slip conditions at every contact points. After mapping no-slip condition to torque space, we derived intersected region of given torque bounds and the mapped region in torque space so that the intersected region in torque space guarantees no excessive torque as well as no-slip at the contact points. The intersected region in torque space is mapped to an acceleration convex polytope corresponding to the maximum acceleration boundaries which can be exerted by the robot fingers under the given individual bounds of each joints torque and without causing slip at the contacts. As will be shown through the analysis and examples, the stable grasping depends on the joint driving torque limits, the posture and the mass of robot fingers, the configuration and the mass of an object, the grasp position, the friction coefficients between the object surface and finger end-effectors.

Three-Dimensional Analysis on Induction Port and In-cylinder Flow for Various Valve Lifts in an SI Engine (SI 엔진의 밸브 리프트에 따른 흡입 포트 및 실린더내 정상 3차원 유동장 해석)

  • Kim, Y.N.;Lee, K.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제3권5호
    • /
    • pp.82-89
    • /
    • 1995
  • The three-dimensional fluid motion through the intake port and cylinder of a single DOHC SI engine was investigated with a commercial computational fluid dynamics simulation program, STAR-CD. This domain includes the intake port, intake valves and combustion chamber. Steady induction port flows for various valve lifts have been simulated for an actual engine configuration. The geometry was obtained by direct interface with a three-dimensional CAD software for complicated port and valve shape. The computational grid was generated using the commercial preprocessor ICEM CFD/CAE. Detailed procedures were presented on the generation of the geometry and the block-structured mesh. A standard k-${\varepsilon}$ turbulent model was applied to consider the complexity of the geometry and the fluid motion. The global flow patterns and the distributions of various quantities, such as pressure, velocity magnitude around the valve seat etc., were examined. The computational results, such as mass flow rate, discharge coefficient etc., for various valve lifts were compard with the experimental results and the computational results were found in good agreement with the experiment.

  • PDF

Study on hole-filling technique of motion capture images using GANs (Generative Adversarial Networks) (GANs(Generative Adversarial Networks)를 활용한 모션캡처 이미지의 hole-filling 기법 연구)

  • Shin, Kwang-Seong;Shin, Seong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.160-161
    • /
    • 2019
  • As a method for modeling a three-dimensional object, there are a method using a 3D scanner, a method using a motion capture system, and a method using a Kinect system. Through this method, a portion that is not captured due to occlusion occurs in the process of creating a three-dimensional object. In order to implement a perfect three-dimensional object, it is necessary to arbitrarily fill the obscured part. There is a technique to fill the unexposed part by various image processing methods. In this study, we propose a method using GANs, which is the latest trend of unsupervised machine learning, as a method for more natural hole-filling.

  • PDF