• Title/Summary/Keyword: three dimensional motion

Search Result 1,015, Processing Time 0.026 seconds

Motion Animation using orthogonal parameters (직교 파라미터 조합을 이용한 모션 애니메이션)

  • 이칠우;진철영;배기태;정민영
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2283-2286
    • /
    • 2003
  • This paper has expressed human's motion data into orthogonal parameters in low dimension, and created new motion data through this. We have reconstructed a new model consisting of orthogonal parameters from dividing human body data into three parts - hand, leg, and body to make new motions. Mixing these parts of body from different motions has leaded to new good motion data. It will be possible to use this motion editing not only for Animation Technology, but also for a three dimensional gesture recognition skill.

  • PDF

Optical Tracking of Three-Dimensional Brownian Motion of Nanoparticles

  • Choi C. K.;Kihm K.D.
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.3-19
    • /
    • 2005
  • Novel optical techniques are presented for three-dimensional tracking of nanoparticles; Optical Serial Sectioning Microscopy (OSSM) and Ratiometric Total Internal Reflection Fluorescent Microscopy (R-TIRFM). OSSM measures optically diffracted particle images, the so-called Point Spread Function (PSF), and dotermines the defocusing or line-of-sight location of the imaged particle measured from the focal plane. The line-of-sight Brownian motion detection using the OSSM technique is proposed in lieu of the more cumbersome two-dimensional Brownian motion tracking on the imaging plane as a potentially more effective tool to nonintrusively map the temperature fields for nanoparticle suspension fluids. On the other hand, R-TIRFM is presented to experimentally examine the classic theory on the near-wall hindered Brownian diffusive motion. An evanescent wave field from the total internal reflection of a 488-nm bandwidth of an argon-ion laser is used to provide a thin illumination field of an order of a few hundred nanometers from the wall. The experimental results show good agreement with the lateral hindrance theory, but show discrepancies from the normal hindrance theory. It is conjectured that the discrepancies can be attributed to the additional hindering effects, including electrostatic and electro-osmotic interactions between the negatively charged tracer particles and the glass surface.

  • PDF

A Study on Locational Control of Motion Ghost in Magnetic Imaging System (자기공명영상장치(磁氣共鳴映像裝置)에서 움직임허상(虛像)의 위치제어(位置制御)에 관(關)한 연구(硏究))

  • Lee, Who-Min
    • Journal of radiological science and technology
    • /
    • v.16 no.2
    • /
    • pp.19-26
    • /
    • 1993
  • Magnetic Resonance Image represents three-dimensional diagnostic imaging technique using both nuclear magnetic resonance phenomenon and computer. Compared with computed tomography (CT), MRI have advantages harmless to patient's body, three-dimensional image with high resolution and disadvantages long data acquisition time because of long T1 relaxation time, relatively low signal to noise ratio, high cost of setting, also. As physiologic motion of tissue results in motion ghost in MRI, high 2.0Tesla make improve low signal to noise ratio. This study have aim to improve image quality with controling motion ghost of tissue. Supposing a moving pixel in constant frequency, one pixel make two ghosts which are same size and different anti-phase. So, this study will show adjust parameter on locational control of motion ghost. Author made moving phantom replaced by respiratory movement of human, researched change of motion frequency, FOV by location shift, and them decided optimal FOV (field of view). The results are as follows: 1. The frequency content of the motion determines how far the image always appear in phase-encoding direction, the morphology of the ghost image is characteristic of the direction of the motion and its amplitude. 2. Double FOV of fixed signal object for locational control of motion ghost is recommended. Decreasement of spatial resolution by increasing FOV can compensate on increasing of matrix in spite of scan time increasement.

  • PDF

Two-Dimensional Image-Based Respiratory Navigator for Free-Breathing Coronary Magnetic Resonance Angiography

  • Shin, Taehoon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.1
    • /
    • pp.71-77
    • /
    • 2018
  • Purpose: To develop a two-dimensional (2D) image-based respiratory motion correction technique for free-breathing coronary magnetic resonance angiography (MRA). Materials and Methods: The proposed respiratory navigator obtained aliased a 2D sagittal image from under-sampled k-space data and utilized motion correlation between the aliased images. The proposed navigator was incorporated into the conventional coronary MRA sequence including the diaphragm navigator and tested in three healthy subjects. Results: The delineation of major coronary arteries was significantly improved using the proposed 2D motion correction (S/I and A/P) compared to one-dimensional (S/I) correction using the conventional diaphragm navigator. Conclusion: The 2D image-based respiratory navigator was proposed for free-breathing coronary angiography and showed the potential for improving respiratory motion correction compared to the conventional 1D correction.

Measurement Method for Fine 6-DOF Displacement of Rigid Bodies (강체의 6자유도 미소 변위 측정)

  • Park, Won-Shik;Cho, Hyung-Suck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.208-219
    • /
    • 2002
  • A novel measurement method to obtain the 6-DOF motions of arbitrary rigid bodies is proposed in this paper. The method adopts a specially fabricated mirror called 3-facet mirror, which looks like a triangular pyramid haying an equilateral cross-sectional shape. The mirror is mounted on the objects to be measured, illuminated by a laser beam having circular profile, and reflects the laser beam in three different directions. Three PSDs(position sensitive detector) detect the three beams reflected by the mirror, respectively. From the signals of the PSDs, we can calculate the 3-dimensional position and orientation of the 3-facet mirror, and thus enabling us to determine the 3-dimensional position and orientation of the objects. In this paper, we model the relationship between the 3-dimensional position and orientation of an object in motion and the outputs of three PSDs. A series of experiments are performed to demonstrate the effectiveness and accuracy of the proposed method. The experimental results show that the proposed sensing system can be an effective means of obtaining 3-dimensional position and orientation of arbitrary objects and provide resonable measurement accuracy.

Development of contents based on virtual environment of basic physics education (기초 물리 교육목적의 가상환경 기반 콘텐츠 개발 및 활용)

  • Jaeyoon Lee;Tackhee Lee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.149-158
    • /
    • 2023
  • HMD, which is applied with the latest technology, minimizes motion sickness with high-resolution displays and fast motion recognition, and can accurately track location and motion. This can provide an environment where you can immerse yourself in a virtual three-dimensional space, and virtual reality contents such as disaster simulators and high-risk equipment learning spaces are developing using these characteristics. These advantages are also applicable in the field of basic science education. In particular, expanding the concepts of electric and magnetic fields in physics described by existing two-dimensional data into three-dimensional spaces and visualizing them in real time can greatly help improve learning understanding. In this paper, realistic physical education environments and contents based on three-dimensional virtual reality are developed and the developed learning contents are experienced by actual learning subjects to prove their effectiveness. A total of 46 middle school and college students were taught and experienced in real time the electric and magnetic fields expressed in three dimensions in a virtual reality environment. As a result of the survey, more than 85% of positive responses were obtained, and positive results were obtained that three-dimensional virtual space-based physical learning could be effectively applied.

A study of isometric position of the knee during anterior cruciate ligament reconstruction (전십자 인대 재건시 등장위치에 관한 연구)

  • 박정홍;손권;김광훈;문병영;서정탁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.158-161
    • /
    • 2004
  • The isometric position of the anterior cruciate ligament was calculated during flexion-extension. Flexion-extension motion data of the knee joint were obtained by Fastrak, a three-dimensional motion measurement system. A subject was seated on a flat table and the tibia sensor position was measured with the femur fixed at the table. A three-dimensional knee model was constructed using a graphic tool to simulate the knee motion. Three surgical positions of the femoral tunnel were selected and the distances between the determined tibial tunnel and each femoral tunnel were calculated. The maximum elongation position was found to be in the ten thirty direction of clock.

  • PDF

Prediction of Motion Responses between Two Offshore Floating Structures in Waves

  • Kim, Mun-Sung;Ha, Mun-Keun
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.3
    • /
    • pp.13-25
    • /
    • 2002
  • In this paper, the motion responses with hydrodynamic interaction effect between two off-shore floating structures in various heading waves are studied by using a linearized three-dimensional potential theory. Numerical calculations using three-dimensional pulsating source distribution techniques have been carried out for twelve coupled linear motion responses and relative motions of the barge and the ship in oblique waves. The computational results give a good correlation with the experimental results and also with other numerical results. As a result, the present computational tool can be used effectively to predict the motion responses of multiple offshore floating structures in waves.

Development of a Dynamic Response Analysis Method of Tension Leg Platforms in Waves (인장 계류식 해양구조물의 동적응답 해석법의 개발)

  • 구자삼;이창호;홍봉기
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.133-146
    • /
    • 1993
  • A numerical procedure is described for predicting the motion and structural responses of tension leg platforms (TLPs) in waves. The developed numerical approach is based on combination of a three dimensional source distribution method and the dynamic response analysis method, in which the superstructure of TLPs is assumed flexible instead of the rigid body assumption used in usual two-step analysis method, proposed by Yoshida et. al. .The hydrodynamic interactions among TLP members, such as columms and pontoons, are included in the motion and structural analyses. Numerical results are compared with the experimental and numerical ones, which are obtained in the literature, of the motion and structural responses of a TLP in waves. The results of comparison confirmed the validity of the proposed approach.

  • PDF

Cutting Motion Simulator for Nutating Head Type S-axis CNC Laser Cutting Machine (Nutating 헤드 타입 5축 CNC 레이저 절단기용 동작 시뮬레이터)

  • Kang, Jae-Gwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.3
    • /
    • pp.35-40
    • /
    • 2011
  • 5-axis laser cutting has great advantages when it is applied to three dimensional machining requiring high cutting quality. For developing 5-axis CNC laser cutting systems, however, many problems such as rotating a laser head or a working table, 5-axis servo-control mechanism, tool path generation and post-processing, and collision avoidance between a laser head and a work-piece should be solved. In this paper, we deal with developing a motion simulator for 5-axis laser cutting machine with a nutating cutting head whose rotational axis is in an inclined plane. Two essential modules such as post-processor and cutting motion simulator was developed based on a commercial 3D CAD of UG-NX. The developed system was applied to three dimensional cutting products and showed the validity of the developed methods.