• Title/Summary/Keyword: thiocyanate ion

Search Result 35, Processing Time 0.024 seconds

Oxygen Ring Formation Reaction of Mono-Oxo Bridged Binudear Molybdenum (Ⅴ) Complex (Ⅲ). Reaction of $[Mo_2O_3(Ox)_2(OxH)_2(NCS)_2]$ with solvent Water in Binary Aqueous Mixtures (한개의 산소다리를 가진 몰리브덴(V) 착물의 산소고리화 반응 (제 3 보). 2 성분 혼합용매에서 용매물과 $[Mo_2O_3(Ox)_2(OxH)_2(NCS)_2]$의 반응)

  • Sang Oh Oh;Huee Young Seok
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.528-535
    • /
    • 1988
  • The rates of oxygen ring formation of $[Mo_2O_3(Ox)_2(OxH)_2(NCS)_2]$ have been investigated spectrophotometric method in binary aqueous mixtures. Temperature was $20^{\circ}C$ to $40^{\circ}C$ and pressure was varied up to 1500 bar. The observed rate constants are increased by hydrogen ion and decreased by thiocyanate. The more increasing of co-solvents dielectric constant, the more stable intermediate is formed. The observed rate constant is given by, $k_{obs}^{-1} = k^{-1} (1 + K^{-1}[H_2O]^{-1}) All activation parameters are positive values. The oxygen ring formation of [Mo_2O_3(Ox)_2(OxH)_2(NCS)_2]$ is believed to be a interchange-dissociative mechanism..

  • PDF

A Solid-Contact Indium(III) Sensor based on a Thiosulfinate Ionophore Derived from Omeprazole

  • Abbas, Mohammad Nooredeen;Amer, Hend Samy
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1153-1159
    • /
    • 2013
  • A novel solid-contact indium(III)-selective sensor based on bis-(1H-benzimidazole-5-methoxy-2-[(4-methoxy-3, 5-dimethyl-1-pyridinyl) 2-methyl]) thiosulfinate, known as an omeprazole dimer (OD) and a neutral ionophore, was constructed, and its performance characteristics were evaluated. The sensor was prepared by applying a membrane cocktail containing the ionophore to a graphite rod pre-coated with polyethylene dioxythiophene (PEDOT) conducting polymer as the ion-to-electron transducer. The membrane contained 3.6% OD, 2.3% oleic acid (OA) and 62% dioctyl phthalate (DOP) as the solvent mediator in PVC and produced a good potentiometric response to indium(III) ions with a Nernstian slope of 19.09 mV/decade. The constructed sensor possessed a linear concentration range from $3{\times}10^{-7}$ to $1{\times}10^{-2}$ M and a lower detection limit (LDL) of $1{\times}10^{-7}$ M indium(III) over a pH range of 4.0-7.0. It also displayed a fast response time and good selectivity for indium(III) over several other ions. The sensor can be used for longer than three months without any considerable divergence in potential. The sensor was utilized for direct and flow injection potentiometric (FIP) determination of indium(III) in alloys. The parameters that control the flow injection method were optimized. Indium(III) was quantitatively recovered, and the results agreed with those obtained using atomic absorption spectrophotometry, as confirmed by the f and t values. The sensor was also utilized as an indicator electrode for the potentiometric titration of fluoride in the presence of chloride, bromide, iodide and thiocyanate ions using indium(III) nitrate as the titrant.

An Improved Method for the Determination of Scandium by Neutron Activation Analysis (스칸듐定量을 위한 改良된 放射化分析法)

  • Chung, Koo-Soon;Lee, Chul
    • Journal of the Korean Chemical Society
    • /
    • v.8 no.2
    • /
    • pp.88-91
    • /
    • 1964
  • A rapid and simple method is described here for the determination of scandium in monazite by neutron activation analysis. The sample is irradiated for 20 hours at the neutron flux of $10^{12}$ thermal neutrons/$cm^2$/sec in the TRIGA MARK Ⅱ reactor, after which the sample is decomposed by fusion with concentrated sulfuric acid. The scandium-46 together with scandium carrier are separated from the irradiated sample by precipitating with ammonia, and are extracted by solvent extraction of the thiocyanate complex into ether. The induced radioactivity is measured by gamma scintillation spectrometry using the Multichannel Pulse Height Analyzer connected with 2"${\times}$2" NaI(Tl). The chemical yield is determined gravimetrically by precipitating scandium with mandelic acid. In order to check the efficiency of scandium separation and the errors from interfering activities of the other elements, scandium was separated by the cation exchange resin column, and the results from both samples were compared each other, which showed that the chemical procedure used in this work was as selective as the ion-exchange method with respect to scandium separation. The scandium contents in Korean monazite were found to be about 12 p. p. m.

  • PDF

Comparison of Biological Activities of Extracts from Different Parts and Solvent Fractions in Cornus kousa Buerg (산딸나무의 부위별 추출물 및 용매 분획물의 생리활성 비교)

  • Kim, Young-Jung;Jeong, Jin-A;Kwon, Su-Hyun;Lee, Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.21 no.1
    • /
    • pp.28-35
    • /
    • 2008
  • Several extracts of different parts and solvent fractions of Cornus kousa were obtained and their functional material contents, antioxidant activities and tyrosinase inhibition effects were determined. Content of total polyphenols and flavonoids contents in flower were 169.638 $mg{\cdot}g^{-1}$ and 25.418 $mg{\cdot}g^{-1}$, respectively, which were much higher than those of other parts. Also, flower extracts showed the strongest effects on DPPH and ABTS radicals scavenging and ferrous ion chelating. In flower, leaf, and stem extracts, inhibition effects on peroxidation of linoleic acid determined by ferric thiocyanate(FTC) method were higher than a synthetic antioxidant, BHT. Tyrosinase inhibition activities were shown only in flower extract. Flower and leaf extracts, showing high biological activities in various system, were successively reextracted with n-hexane, chloroform, ethylacetate and n-butanol. Total polyphenol contents of water fractions were higher than any other solvent fractions in both flower and leaf, 67.006 $mg{\cdot}g^{-1}$ and 67.739 $mg{\cdot}g^{-1}$, respectively. But total flavonoid contents were higher in ethyl acetate fraction for flower extract and butanol fraction for leaf extract. Among the solvent fractions, the highest efficiency of free radical scavenging activities was obtained in ethyl acetate fraction for flower extract and n-butanol fraction for leaf extract. Tyrosinase inhibition activities were higher in water fraction for both flower and leaf extracts, 49.24% and 31.8%, respectively.

IN VITRO DETERMINATION & QUANTIFICATION OF HYDROGEN PEROXIDE PENETRATION DURING NONVITLAL BLEACHING (무수치 표백시술시 치경부를 통한 표백제 누출량의 정량적 측정)

  • Park, Soo-Kyeong;Lee, Chung-Sik;Choi, Han-Seuk
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.19-34
    • /
    • 1996
  • It has been demonstrated that intracoronal bleaching of pulpless teeth may result in cervical root resorption. Several authors postulated that bleaching agents such as hydrogen peroxide penetrated through the dentinal tubules to damage the surrounding tissues that cause cervical root resorption. The purpose of this study was to suggest on in vitro model for direct determination of hydrogen peroxide penetration through CEJ during nonvital bleaching. In addition, this model permit the quantification of the amount of hydrogen peroxide penetrated during the procedure. Freshly extracted intact premolars, removed for orthodontic reasons were used. Root canal treatment was performed in each tooth. And then the outer surface and crown portion of the teeth was sealed with wax leaving the CEJ. The prepared teeth mounted on the wax laminates were placed in plastic assay tubes containing 1.5ml bidistilled water with their entire root, including the CEJ, submerged in the solution. The teeth were dividied into four groups. Thermo group : thermocatalytic bleaching with superoxol Walk group: walking bleaching with sodium perborate & superoxol Combi group : combination of thermocatalytic & walking bleaching Dw group : walking bleaching with sodium perborate & water The bleaching procedure was performed three times. The bleaching intervals were at 3 days. The hydrogen peroxide present in the assay system was added to ferrous ammonium sulfate resulting in ferric ion release. Upon the addition of potassium thiocyanate a ferrithiocyanate complex results, which absorbs light at the wavelength of 467nm. The radicular penetration of hydrogen peroxide in the four groups was assessed directly using spectrophotometer. The amount of hydrogen peroxide in the samples tested is determined by comparing them with a standard curve generated by known amounts of hydrogen peroxide. The results were obtained as follows : 1. In all experimental groups except the Dw group showed lower penetration amount in day 4 than day 1, there was statistical importance in the difference (P<0.05). 2. After 3rd treatment, Thermo group showed slightly increased value and narrow distribution. Walk group showed much more penetration amount and widely dispersed value. Value of Combi group showed wide distribution without regard to treatment time, but value of Dw group evenly distributed. 3. Thermo group, Walk group and Dw group showed a tendency of increasing penetration amount with increasing treatment times(P<0.01), but Combi group revealed no statistically important differences. 4. Combi group showed the highest degree of penetration. Walk group showed lower penetration than Combi group. Thermo group & Dw group showed lower than Walk group. 5. Cervical root permeability to hydrogen peroxide varied from 0 to 35 %.

  • PDF