• Title/Summary/Keyword: thinning technique

Search Result 110, Processing Time 0.04 seconds

Deformation Analysis of Wall Thinning Pipe by Using Laser Measurement (레이저 계측을 이용한 곡관 감육부의 변형 해석)

  • Kim K.S.;Jung H.C.;Jung S.W.;Kwag J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.27-28
    • /
    • 2006
  • This study performs to investigate deformation of wall thinning pipe and to find out the position of the internal thinning defect by shearography. Shearography is one of optical methods those have applied to nondestructive testing (NDT) and the strain/stress analysis. This technique has the merit of the directly measuring the first derivative of displacement, sensitivity of which can be adjusted by the handling of optical component in interferometer. In this paper, we tested carbon steel pipe locally wall thinned and loaded internal pressure and developed the nondestructive out-of-plane deformation analysis technique fur internal thinning defect of elbow by shearography. From the results, it was confirmed that this technique is proper to the practical application on the pipe line system with internal defect.

  • PDF

Monitoring Method for Pipe Thinning using Accelerometers (가속도계를 이용한 배관 감육 감시 방법)

  • Choi, Young-Chul;Park, Jin-Ho;Yoon, Doo-Byung;Sohn, Chang-Ho;Hwang, Il-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.156-162
    • /
    • 2006
  • Pipe thinning is one of the major issues for the structural fracture of pipes of nuclear power plants. Therefore a method to inspect a large area of piping systems quickly and accurately is needed. In this paper, we proposed the method for monitoring pipe thinning. Our basic idea come from that a group velocity of impact wave is different as wall thickness. If the group velocity is measured, wall thickness can be estimated. To obtain the group velocity, time-frequency analysis is used. This is because an arrival time difference can be measured easily in time-frequency domain rather than time domain. To test the performance of this technique, experiments have been performed for a plate and U type pipe. Results show that the proposed technique is quite powerful in the monitoring pipe thinning.

  • PDF

Monitoring Pipe Thinning Using Time-frequency Analysis (시간-주파수 기법을 이용한 배관 감육 감시 방법)

  • Sohn, Chang-Ho;Park, Jin-Ho;Yoon, Doo-Byung;Chong, Ui-Pil;Choi, Young-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1224-1230
    • /
    • 2006
  • Pipe thinning is one of the major issues for the structural fracture of pipes of nuclear power plants. Therefore a method to inspect a large area of piping systems quickly and accurately is needed. In this paper, we proposed the method for monitoring pipe thinning. Our basic idea come from that a group velocity of impact wave is different as wall thickness. If the group velocity is measured, wall thickness can be estimated. To obtain the group velocity, time -frequency analysis is used. This is because an arrival time difference can be measured easily in time-frequency domain rather than time domain. To test the performance of this technique, experiments have been performed for a plate and U type pipe. Results show that the proposed technique is quite powerful in the monitoring pipe thinning.

Flap thinning: Defatting after conventional elevation

  • Park, Bo Young
    • Archives of Plastic Surgery
    • /
    • v.45 no.4
    • /
    • pp.314-318
    • /
    • 2018
  • Perforator flaps become a reliable option for coverage of various defects and the interest is change from survival of perforator flaps to make thin flaps for better aesthetic and functional outcomes. Multiple flap thinning methods have been demonstrated but it has not been widely attempted because of concerns about compromising circulation of flap thinning. This article will demonstrate the feasibility and benefits of flap thinning technique: defatting after conventional flap elevation.

Defect detection of wall thinning defect in pipes using Lock-in photo-infrared thermography technique (위상잠금 광-적외선 열화상 기술을 이용한 감육결함이 있는 직관시험편의 결함 검출)

  • Kim, Kyoung-Suk;Jang, Su-Ok;Park, Jong-Hyun;Choi, Tae-Ho;Song, Jae-Geun;Jung, Hyun-Chul
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.317-321
    • /
    • 2008
  • Piping in the Nuclear Power plants (NPP) are mostly consisted of carbon steel pipe. The wall thinning defect is mainly occurred by the affect of the flow accelerated corrosion (FAC) of fluid which flows in carbon steel pipes. This type of defect becomes the cause of damage or destruction of piping. Therefore, it is very important to measure defect which is existed not only on the welding partbut also on the whole field of pipe. Over the years, Infrared thermography (IRT) has been used as a non destructive testing methods of the various kinds of materials. This technique has many merits and applied to the industrial field but has limitation to the materials. Therefore, this method was combined with lock-in technique. So IRT detection resolution has been progressively improved using lock-in technique. In this paper, the quantitative analysis results of the location and the size of wall thinning defect that is artificially processed inside the carbon steel pipe by using IRT are obtained.

  • PDF

A theoritical study on spin coating technique

  • Tyona, M.D.
    • Advances in materials Research
    • /
    • v.2 no.4
    • /
    • pp.195-208
    • /
    • 2013
  • A comprehensive theory of the spin coating technique has been reviewed and the basic principles and parameters controlling the process are clearly highlighted, which include spin speed, spin time, acceleration and fume exhaust. The process generally involves four stages: a dispense stage, substrate acceleration stage, a stage of substrate spinning at a constant rate and fluid viscous forces dominate fluid thinning behaviour and a stage of substrate spinning at a constant rate and solvent evaporation dominates the coating thinning behaviour. The study also considered some common thin film defects associated with this technique, which include comet, striation, chucks marks environmental sensitivity and edge effect and possible remedies.

Deformation Measurement of Well Thinning Elbow by Using Shearography (전단간섭법을 이용한 감육 곡관부의 변형 계측)

  • Jung, Hyun-Chul;Kim, Koung-Suk;Chang, Ho-Sub;Jung, Sung-Wook;Kang, Ki-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.321-328
    • /
    • 2006
  • In this study, the deformation oi wall thinning elbow is measured and the position of the internal thinning defect is found out by shearography. Shearography is an optical method which has applied to nondestructive testing (NDT) and the strain/stress and deformation analysis. This technique has the merit of the directly measuring the first derivative of displacement with sensitivity which can be adjusted by handling the tilt mirror in the interferometer. In this paper, we tested carbon steel pipe locally wall thinned and loaded internal pressure and the shearography was applied to measure the out-of-plane deformation of wall thinning elbow and to investigate the internal thinning defect of it. From the results, it was confirmed that this technique is proper to the practical application on the pipe line system with internal defect.

Evaluation of Improvement of Detection Capability of Infrared Thermography Tests for Wall-Thinning Defects in Piping Components by Applying Lock-in Mode (적외선열화상 시험에서 위상잠금모드 적용에 따른 배관 감육결함 검출능력 개선 평가)

  • Kim, Jin Weon;Yun, Kyung Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1175-1182
    • /
    • 2013
  • The lock-in mode infrared thermography (IRT) technique has been developed to improve the detection capability of defects in materials with high thermal conductivity, and it has been shown to provide better detection capability than conventional active IRT. Therefore, to investigate the application of this technique to nuclear piping components, lock-in mode IRT tests were conducted on pipe specimens containing simulated wall-thinning defects. Phase images of the wall-thinning defects were obtained from the tests, and they were compared with thermal images obtained from conventional active IRT tests. It showed that the ability to size the detected wall-thinning defects in piping components was improved by using lock-in mode IRT. The improvement was especially apparent when detecting short and narrow defects and defects with slanted edges. However, the detection capability for shallow wall-thinning defects did not improve much when using lock-in mode IRT.

Development of Numerical Algorithm of Total Point Method for Thinning Evaluation of Nuclear Secondary Pipes (원전 2차측 배관 감육여부 판별을 위한 Total Point Method 전산 알고리즘 개발)

  • Oh, Young Jin;Yun, Hun;Moon, Seung Jae;Han, Kyunghee;Park, Byeong Uk
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.31-39
    • /
    • 2015
  • Pipe wall-thinning by flow-accelerated corrosion (FAC) and various types of erosion is a significant and costly damage phenomenon in secondary piping systems of nuclear power plants (NPPs). Most NPPs have management programs to ensure pipe integrity due to wall-thinning that includes periodic measurements for pipe wall thicknesses using ultrasonic tests (UTs). Nevertheless, thinning evaluations are not easy because the amount of thickness reduction being measured is often quite small compared to the accuracy of the inspection technique. U.S. Electric Power Research Institute (EPRI) had proposed Total Point Method (TPM) as a thinning occurrence evaluation method, which is a very useful method for detecting locally thinned pipes or fittings. However, evaluation engineers have to discern manually the measurement data because there are no numerical algorithm for TPM. In this study, numerical algorithms were developed based on non-parametric and parametric statistical method.