Browse > Article
http://dx.doi.org/10.12989/amr.2013.2.4.195

A theoritical study on spin coating technique  

Tyona, M.D. (Department of Physics, Benue State University)
Publication Information
Advances in materials Research / v.2, no.4, 2013 , pp. 195-208 More about this Journal
Abstract
A comprehensive theory of the spin coating technique has been reviewed and the basic principles and parameters controlling the process are clearly highlighted, which include spin speed, spin time, acceleration and fume exhaust. The process generally involves four stages: a dispense stage, substrate acceleration stage, a stage of substrate spinning at a constant rate and fluid viscous forces dominate fluid thinning behaviour and a stage of substrate spinning at a constant rate and solvent evaporation dominates the coating thinning behaviour. The study also considered some common thin film defects associated with this technique, which include comet, striation, chucks marks environmental sensitivity and edge effect and possible remedies.
Keywords
substrate; centrifugal force; spin coating; thin film; photolithography; acceleration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chiou, W.T., Wu, W.Y. and Ting, J.M. (2003), "Growth of single crystal ZnO nanowires using sputter deposition", Diam. Relat. Mater., 12, 1841-1844.   DOI   ScienceOn
2 Emslie, D., Bonner, P. and Peck, C. (1958), "Fluid flow basics (ideal Case)", J. Appl. Phys. 29, 858-862.   DOI
3 Hanaor, D., Trianni, G. and Sorrell, C. (2011), "Morphology and photocatalytic activity of highly oriented mixed phase titanium dioxide thin film", Surf. Coat. Tech., 205(12), 855-874.
4 Hellstrom, S.L. (2007), Published course work for physics 210, Stanford University, Autumn 2007.
5 Heo, Y.W., Varadarajan, V., Kaufman, M., Kim, K., Norton, D.P., Ren, F. and Fleming, P.H. (2002), "Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam epitaxy", Appl. Phys. Lett. 81, 3046-3048.   DOI   ScienceOn
6 Hewes, J. (2011), "Power supplies", The Electronics Club.
7 Holt, C.A. (1978), Electronic Circuits, Digital and Analog. John Wiley and Sons, New York.
8 Hong, J.I., Bae, J., Wang, Z.L. and Snyder, R.L. (2009), "Room temperature, texture-controlled growth of ZnO thin films and their application for growing aligned ZnO nanowire arrays", Nanotechnology, 20, 085609.   DOI   ScienceOn
9 Huang, M.H., Wu, Y.Y., Feick, H., Tran, N., Weber, E. and Yang, P.D. (2001), "Catalytic growth of zinc oxide nanowires by vapor transport", Adv. Mater., 13, 113-116.   DOI   ScienceOn
10 Ilican, S., Caglar, Y. and Caglar, M. (2008), "Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method", J. Optoelectron. Adv. Mater., 10(10), 2578-2583.
11 Oliveira, J.P., Laia, C.T. and Branco, L.C. (2012), "Optimization of Ionic Liquid Film Deposition by Spin and Dip Coating Techniques", J. Maters. Sc. Eng. B, 2(8), 437-441.
12 Kamaruddin, S.A., Chan, K., Yow, H., Sahdan, M.Z., Saim, H. and Knipp, D. (2010), "Zinc oxide films prepared by sol-gel spin coating technique", Appl. Phys. A. 104, 263-268.
13 Chang, P.C. and Lu, J.G. (2008), "ZnO nanowire field-effect transistors", IEEE T. Electron. Dev., 55, 2977-2987.   DOI   ScienceOn
14 Lin, D., Wu, H. and Pan, W. (2007), "Photoswitches and memories assembled by electrospinning aluminum-doped zinc oxide single nanowires", Adv. Mater. 19, 3968-3972.   DOI   ScienceOn
15 Madou, M. (2002), Fundamentals of Microfabrication. The Science of Miniaturization, 2nd ed., CRC Press.
16 Al-Juaid, F., Merazga, A., Abdel-Wahab, F. and Al-Amoudi, M.N. (2012), "ZnO Spin-Coating of $TiO_2$ photo-electrodes to enhance the efficiency of associated dye-sensitized solar cells", World J. Condensed Matter Physics. 2, 192-196.   DOI
17 Middleman, S. and Hochberg, A.K. (1993), Process Engineering Analysis in Semiconductor Devices Fabrication, McGraw Hill, P. 313.
18 Mihi, A., Oca-mtlide, M. and Miguez, H. (2006), "Oriented colloidal-crystal thin films by spin-coating microspheres dispersed in volatile media", Adv. Mat., 18, 2244.   DOI   ScienceOn
19 Mitzi, D.B., Kosbar, L.L., Murray, C.E., Copel, M. and Atzali, A. (2004), "High mobility ultrathin semiconducting films prepared by spin coating", Nature, 428, 299-303.   DOI   ScienceOn
20 Meyerhofer, D. (1978), "Key stages in spin coating process", J. Appl. Phys., 49, 3993.   DOI   ScienceOn
21 Niranjan, S., Parija, B. and Panigrahi, S. (2009), "Fundamental understanding and modeling of spin coating process: A review", Indian J. Phys., 83(4), 493-502.   DOI
22 Pan, Z.W., Dai, Z.R. and Wang, Z.L. (2001), "Nanobelts of semiconducting oxides", Science, 291, 1947-1949.   DOI   ScienceOn
23 Schuler, A.C. (1999), Electronics Principles and Applications. Fifth edition; McGraw-Hill, New York.
24 Panigrahi, S., Waugh, S., Rout, S.K., Hassan, A.K. and Ray, A.K. (2008), "Study of spin coated organic thin film under spectrophotometer", J. Mater. Res., 28, 858.
25 Peeters, T. and Remoortere, B.V. (2008), "Parameters of the spin coating process", J. Appl. Sci., 46, 685-696.
26 Schubert, D.W. and Dunkel, T. (2003), "Spin coating from molecular point of view: Its concentration regimes, Influence of molar of molar mass and distribution", Mater. Res. Innov., 7, 314.   DOI
27 Schwartz, L.W. and Roy, R.V. (2004), "Theoretical and numerical results for spin coating of viscous liquids", Phys. Fluid, 16, 569.   DOI   ScienceOn
28 Spin Coating Machine (2013), Available @: http://www.holmarc.com/spin_coating_machine.html., Retrieve on February 18.
29 Sui, X.M., Shao, C.L. and Liu, Y.C. (2005), "White-light emission of polyvinyl alcohol/ZnO hybrid nanofibers prepared by electrospinning", Appl. Phys. Lett., 87, 113-115.
30 Swati, S., Tran, A., Nalamasu, O. and Dutta, P.S. (2006), "Spin-coated ZnO thin films using ZnO Nano-colloid", J. Electron. Mater., 35(6), 9965-9968.
31 Wu, J.J., Wen, H.I. Tseng, C.H. and Liu, S.C. (2004), "Well-aligned ZnO nanorods via hydrogen treatment of ZnO films", Adv. Funct. Mater. 14, 806-810.   DOI   ScienceOn
32 Xu, S. and Wang, Z.L. (2011), "One-dimensional ZnO nanostructures: solution growth and functional properties", Nano Res., 4(11), 1013-1098   DOI
33 Xu, C.K., Xu, G.D., Liu, Y.K. and Wang, G.H. (2002), "A simple and novel route for the preparationof ZnO nanorods", Solid State Commun., 122, 175-179.   DOI   ScienceOn
34 Washo, B.D. (1977), "Rheology and modeling of the spin coating process", IBM J. Res. Develop., 190-198.
35 Vayssieres, L., Keis, K., Lindquist, S.E. and Hagfeldt, A. (2001), "Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO", J. Phys. Chem. B, 105, 3350-3352.   DOI   ScienceOn
36 Verges, M.A., Mifsud, A. and Serna, C.J. (1990), "Formation of rodlike zinc-oxide microcrystals in homogeneous solutions", J. Chem. Soc. Faraday Trans., 86, 959-963.   DOI
37 Wang, Z.L. (2008), "Towards self-powered nanosystems: From nanogenerators to nanopiezotronics", Adv. Funct. Mater. 18, 3553-3567.   DOI   ScienceOn
38 Yuan, H. and Zhang, Y. (2004), "Preparation of well-aligned ZnO whiskers on glass substrate by atmospheric MOCVD", J. Cryst. Growth., 263, 119-124.   DOI   ScienceOn
39 Zhang, H., Yang, D.R., Ma, X.Y., Du, N., Wu, J.B. and Que, D.L. (2006), "Straight and thin ZnO nanorods: Hectogram-scale synthesis at low temperature and cathodoluminescence", J. Phys. Chem. B, 110, 827-830.   DOI   ScienceOn