• Title/Summary/Keyword: thinner

Search Result 1,062, Processing Time 0.023 seconds

Evaluation of danger zone in mesial root of mandibular first molar by cone beam computed tomography (CBCT) (Cone beam형 전산화단층촬영장치를 이용한 하악 제1대구치 근심 치근의 danger zone에 관한 연구)

  • Chang, Yoo-Rhee;Choi, Yong-Suk;Choi, Gi-Woon;Park, Sang-Hyuk
    • Imaging Science in Dentistry
    • /
    • v.37 no.2
    • /
    • pp.103-110
    • /
    • 2007
  • Purpose: To examine the danger zone of mesial root of mandibular first molar of patient without extraction using CBCT (cone-beam computed tomography) to avoid the risk of root perforation. Materials and Methods: 20 mandibular first molars without caries and restorations were collected, CT images were obtained by CBCT ($PSR9000N^{TM}$, Asahi Roentgen Co., Japan), reformed and analyzed by V-work 5.0 (CyberMed Inc., Korea), Distance between canal orifice and furcation was measured. In cross sectional images at 3, 4 and 5 mm below the canal orifice, distal wall thickness of mesiobuccal canal (MB-D), distal wall thickness of mesiolingual canal (ML-D), distal wall thickness of central part (C-D), mesial wall thickness of mesiobuccal canal (MB-M) and mesial wall thickness of mesiolingual canal (ML-M) were measured, Results: The mean distance between the canal orifice and the furcation of the roots is 2.40 mm, Distal wall is found to be thinner than mesial wall. Mean dentinal wall thickness of distal wall is about 1 mm, The wall thickness is thinner as the distance from the canal orifice is farther. But significant differences are not noted between 4 mm and 5 mm in MB-D and C-D, MB-D is thinner than ML-D although the differences is not significant. Conclusion: The present study confirmed the anatomical weakness of distal surface of the coronal part of the mesial roots of mandibular first molar by CBCT and provided an anatomical guide line of wall thickness during endodontic treatment.

  • PDF

High-Pressure Finger Injection Injury Caused by Paint Thinner: Case Report (페인트 신나에 의한 수지 고압 손상의 경험)

  • Song, Jin Woo;Choi, Hwan Jun;Kim, Mi Sun
    • Archives of Plastic Surgery
    • /
    • v.34 no.2
    • /
    • pp.269-273
    • /
    • 2007
  • Purpose: High-pressure injection(HPI) injury is an injury caused by accidental injection of substances by industrial equipment. HPI injury of the hand is a serious injury that can be potentially devastating. There have been a number of publications on the results of its treatment and its functional outcome of these hands. Unfortunately, the clinical outcomes were unsatisfactory following an initial treatment approach of digital expression of the injection material, elevation, soaks, dressing changes, and antibiotics. Methods: A 43-year-old right handed man sustained a high pressure injection injury to the tip of the left index finger. The injected material was industrial paint thinner. Tissue necrosis was noted at the pulp of the finger. Several debridements and irrigation were required. A pedicled chest flap transfer was performed on the eighteenth day after injury as the dorsal nail complex remained viable. This is a retrospective review of our experience with high-pressure finger injection injury caused by paint. A literature review, retrospective chart and radiologic review were presented. Results: Follow-up length was about 1 year. The injuried hand was left nondominant hand, the index. Patient complaints were cold intolerance, paresthesia, contact pain, and impairment of activities of daily living. Conclusion: The outcome of high-pressure injection injuries of the hand is affected by many factors. The time between injury and operative treatment has been regarded as a key determinant by a number of authors. The nature of the injected material is probably more important. It has been noted by many authors that injuries with paints have a worse outcome than those with oil or grease. This study confirms the fact that high-pressure injection injury caused by paint thinner to the hand is a significant problem. Virtually a patient suffers sequelae of this injury. The injury has significant repercussions for future function and reintegration into the work force.

Washing effect of fingermark contaminated with flammable liquids (인화성액체에 오염된 지문의 세척 효과)

  • Ho-Won, Jang;Ji-Yun, Kwon;Hyo-Mi, Kim;Seung-Ju, Yoo;Sungwook, Hong
    • Analytical Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.237-241
    • /
    • 2022
  • The effect of washing fingerprints deposited on glass that were contaminated with a flammable liquid (gasoline, kerosene, diesel, and thinner) was studied by washing with hexane or heptane. The fingerprints were visualized using fuming cyanoacrylate, followed by basic yellow 40 staining. After comparing the washing effect, by dividing one fingerprint into four sections, it was confirmed that the ridge detail was damaged by dissolving the fingerprints in flammable liquid. As a result of washing fingerprints contaminated with flammable liquids using hexane or heptane, fingerprints contaminated with gasoline, kerosene, and thinner did not show a washing effect because the ridge detail was damaged at the time of contamination, and only fingerprints contaminated with diesel exhibited improved ridge detail quality. Because hexane and heptane washing damage the ridge detail, it was found that fingerprints contaminated with gasoline, kerosene, and thinner were better enhanced directly without the washing process. In addition, it was found that the amount of the washing solvent and contact time should be minimized when washing fingerprints contaminated with diesel.

An Experimental Study for Electro-active Polymer Electrode and Actuator (전기활성 고분자 전극 및 구동기에 관한 실험적 연구)

  • Lee, Jun-Man;Ryu, Sang-Ryeoul;Lee, Dong-Joo;Lin, Zheng-Jie
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.289-294
    • /
    • 2013
  • A thinner is used to improve the multi-walled carbon nano-tube (CNT) and carbon black (CB) dispersion in a polymer matrix and to make a soft electrode. The electrical and mechanical properties of the soft electrodes are investigated as functions of CNT, CB and thinner content. The optimal mixing condition for the electrode is thinner 80, CNT 3.5, CB 18 (phr) on the basis of matrix (KE-12). The specific resistance of that is 73 (${\Omega}{\cdot}cm$), and tensile strength, tensile modulus, and elongation of that is 0.45 MPa, 0.21 MPa, and 184%, respectively. Also, a simple structure of the actuator with an optimized electrode and elastomer is fabricated and its characteristic is evaluated. At the operating voltage 25 kV, the displacement of an elastomer KE-12 is 2.24 mm, and that of an elastomer KE-12 with thinner 50 (phr) is 4.05 mm. It shows a higher displacement compared to that of 3M 4910 which has similar modulus. The actuator made with elastomer and electrode of the same material (KE-12) may have advantages for fatigue life and application.

LUBRICATION AND SURFACE DISTRESS OF LOADED TOOTH FLANK OF GEARS

  • Kubo, Arzoh
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1991.06a
    • /
    • pp.1-30
    • /
    • 1991
  • The lubrication state between contacting bodies with rolling and sliding under loaded condition is generally understood by the conception shown in Figure 1. When the lubricating oil film formation between facing bodies is good enough to separate these bodies by the hydrodynamic pressure, this state is called by the expression of "hydrodynamic lubrication". The thickness of oil film is so large that the lubricating oil between facing bodies behaves as fluid and metal-to-metal contact between surface roughness asperities on facing bodies does not occur. When the oil film thickness becomes thinner or when the surface roughness height becomes larger, top of surface roughness asperities on facing bodies reaches very near to each other and there the oil or absorbed oil molecules on the surface of facing bodies behave no more as fluid. Partly metal-to-metal contact of surface roughness asperities occurs. Such lubrication state is called by the expression "mixed-lubrication". When the oil film thickness becomes more thinner or surface roughness height becomes larger, metal-tometal contact or contact via absorbed oil molecules dominate at most of the part in contact zone. Such state is called by the expression "boundary lubrication". Schematic representation of these three regimes of lubrication is shown in Figure 1.rication is shown in Figure 1.

  • PDF

Approximate solutions on the absorption process of an aqueous LiBr falling film : effects of vapor flow (리튬브로마이드 수용액 유하액막의 흡수과정에 대한 근사 해법 : 증기 유동의 영향)

  • Kim, B.J.;Lee, C.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.144-152
    • /
    • 1997
  • Film absorption involves simultaneous heat and mass transfer in the vapor-liquid system. In the present work, the absorption process of water vapor by an aqueous soluton of LiBr flowing inside of the vertical tube was investigated. The continuity, momentum, energy and diffusion equations for the solution film and vapor were formulated in integral forms and solved numerically. The model could predict the film thickness, the pressure gradient, and the heat and mass transfer rate. Particularly the effects of vapor flow conditions on the absorption process were investigated in terms of the vapor Reynolds number. As the vapor Reynolds number increased, the shear stress at the vapor-solution interface also increased. Consequently solution film became thinner at higher vapor flowrate under the co-currentflow condition. Thinner film was capable of higher heat transfer to the wall and leaded to higher absorption rate of the water vapor into the solution film.

  • PDF

Design of the backlight inverter for multi-lamp driving

  • Han Jae Hyun;Lim Young Cheol;Yang Seung Hak;Kweon Gie Hyoun
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.80-83
    • /
    • 2001
  • As a LCD monitor is larger and thinner, a Cold Cathode Fluorescent Lamp (CCFL) for backlight in LCD monitor gradually becomes longer and thinner. The backlight of a large LCD monitor, however, has a limitation in its brightness. In this study, a parallel multi-lamp is used in order to supply enough brightness. Though the CCFLs are made through a detail and equal manufacturing process, they don't have exactly the same features individually in their brightness, frequency, voltage and current. Consequently, it is difficult to have equal brightness at an early lighting condition or during lighting time. In this paper, a parallel multi-lamp which can have the same output under the same condition is designed. For this, 18 inch LCD monitor with four lamps is used. An inverter for multi-lamp driving is also used in this study. The newly designed inverter shows more than $90\%$ efficiency in its brightness input and output. Besides, it is also available for a multi-drive of other lamps.

  • PDF

An Analysis of Dent Formation by Dynamic Finite Element Method (동적 유한요소해석을 이용한 Dent 발생에 대한 연구)

  • Cha, Sung-Hoon;Shin, Myoung-Soo;Kim, Jong-Bong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.58-65
    • /
    • 2010
  • For the improvement of fuel consumption, the study on the use of lightweight material or thinner sheet have been carried out in automotive industry. With the need for the use of thinner sheet, the dent resistance became one of the major concern in th design of exterior panels in automotive industry. Many studies have been carried out for the dent resistance by experiment or quasi-static numerical simulation. In this study, the dent formation behavior is investigated by dynamic finite element analysis using ABAQUS. Dent formation may be affected by many factors such as sheet thickness, material properties, pre-strain, and sheet curvature. The effect of these factors on dent resistance is investigated. From the analysis following three conclusions are derived. First, dent resistance become hard as the sheet curvature radius increases. Second, dynamic dent resistance is mainly affected by bending stress rather than tensile stress. Third, the pre-strain itself do not give any guidance for dynamic dent resistance and dynamic dent resistance have to be decided considering the strain hardening and thickness reduction together. The results are considered to be reliable and useful to improve the dent damage of automotive panels.

A Simulated Study of Silicon Solar Cell Power Output as a Function of Minority-Carrier Recombination Lifetime and Substrate Thickness

  • Choe, Kwang Su
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.487-491
    • /
    • 2015
  • In photovoltaic power generation where minority carrier generation via light absorption is competing against minority carrier recombination, the substrate thickness and material quality are interdependent, and appropriate combination of the two variables is important in obtaining the maximum output power generation. Medici, a two-dimensional semiconductor device simulation tool, is used to investigate the interdependency in relation to the maximum power output in front-lit Si solar cells. Qualitatively, the results indicate that a high quality substrate must be thick and that a low quality substrate must be thin in order to achieve the maximum power generation in the respective materials. The dividing point is $70{\mu}m/5{\times}10^{-6}sec$. That is, for materials with a minority carrier recombination lifetime longer than $5{\times}10^{-6}sec$, the substrate must be thicker than $70{\mu}m$, while for materials with a lifetime shorter than $5{\times}10^{-6}sec$, the substrate must be thinner than $70{\mu}m$. In substrate fabrication, the thinner the wafer, the lower the cost of material, but the higher the cost of wafer fabrication. Thus, the optimum thickness/lifetime combinations are defined in this study along with the substrate cost considerations as part of the factors to be considered in material selection.