공공장소에서의 유기물은 의도적 공공테러를 목적으로 폭발물이나 화학물질 등을 포함할 수 있기 때문에 일단 가능한 위험물로 반드시 다루어져야 한다. 공항이나 기차역과 같은 대형 공공장소에서는 전체 영역을 감시하는 모든 모니터를 점검할 보안 인력을 유지하는데 있어서 비용적 측면의 한계가 있게 마련이다. 이것이 비전 기술에 기반한 위험 유기물의 자동 검사 시스템을 개발하여야 하는 기본적 동기이다. 이 연구에서는 잘 알려진 DBE 기법을 적용하여 배경 이미지를 안정적으로 추출하는 것을 보이며, HOG 알고리즘을 적용하여 물체 분류에 있어서 사람과 물건을 구분하는 기능을 구현하였다. 제안된 시스템의 유효성을 보이기 위하여 감시 지역의 한 실내 환경에 대해 금지구역 침범을 탐지하고 유기물에 대한 경보를 발생하는 실험을 수행하였다.
제조업이 IT기술과 융합되면서 성장 동력으로써 안정적인 자리 매김하기 위해서는 IT 융합을 통하여 산출된 첨단의 산업기술을 안전하게 보호할 수 있는 환경구축이 선행되어야 한다. 이를 위하여 각 산업에서는 산업기술을 보호하기 위한 노력은 꾸준히 진행되어 왔으나, 학문적 기반 체계가 갖추어지지 않은 채 단발성의 관리적/기술적/물리적 대응에 머물고 있다. 이에 따라 산업기술을 보호하기 위한 다차원적인 산업보안 학(學)에 대한 연구 필요성이 꾸준히 제기되어 왔으나, 아직까지 학문적 범위와 함께 세부적인 분류체계 연구가 아집 미흡한 상태이다. 따라서 본 연구에서는 이제까지 연구된 산업보안 학(學)에 연관된 선행연구를 수집 분석하여 산업보안 학(學)에 대한 개념을 재 정의하고, 관련분야 전문가 대상의 델파이방법을 수차례 실시하여 통하여 산업보안 학(學)에 대한 학문적 분류체계를 설계하였다. 아울러 설계된 분류체계를 기반으로 해외 산업보안 학(學) 연구동향에 대한 메타적 분석을 수행함으로써 산업기술을 보호하고자하는 연구자 및 실무자에게 연구방향성 및 기초자료를 제공하고자 하였다.
특징 정규화는 인식기를 적용하기 이전의 전처리 단계로 특징의 스케일에 따른 오류를 줄이기 위해 널리 사용되고 있다. 하지만 기존 정규화 방법은 특징의 분포를 가정하는 경우가 많으며, 클래스 라벨을 고려하지 않으므로 정규화 결과가 인식률에서 최적임을 보장하지 못하는 문제점이 있다. 이 논문에서는 특징의 분포를 가정하지 않는 랭크 정규화 방법과 클래스 라벨을 사용하는 교사 학습법을 결합한 교사 랭크 정규화 방법을 제안하였다. 제안하는 방법은 데이터의 분포를 바탕으로 특징의 분포를 자동으로 추정하므로 특징의 분포를 가정하지 않으며, 데이터 포인트의 최근접 이웃이 가지는 클래스 라벨을 바탕으로 정규화를 시행하므로 오류의 발생을 최소화할 수 있다. 특히 SVM의 경우 서로 다른 클래스에 속하는 데이터 포인트들이 혼재되어 나타나는 영역에 경계선을 설정하므로 이 영역의 밀도를 줄임으로써 경계선 설정을 보다 용이하게 하고 결과적으로 일반화 오류를 감소시킬 수 있다. 이러한 사실들은 실험 결과를 통해 확인할 수 있다.
A smart farm is a system that combines information and communication technology (ICT), internet of things (IoT), and agricultural technology that enable a farm to operate with minimal labor and to automatically control of a greenhouse environment. Machine learning based on recently data-driven techniques has emerged with big data technologies and high-performance computing to create opportunities to quantify data intensive processes in agricultural operational environments. This paper presents research on the application of machine learning technology to diagnose the growth status of crops and predicting the harvest time of strawberries in a greenhouse according to image processing techniques. To classify the growth stages of the strawberries, we used object inference and detection with machine learning model based on deep learning neural networks and TensorFlow. The classification accuracy was compared based on the training data volume and training epoch. As a result, it was able to classify with an accuracy of over 90% with 200 training images and 8,000 training steps. The detection and classification of the strawberry maturities could be identified with an accuracy of over 90% at the mature and over mature stages of the strawberries. Concurrently, the experimental results are promising, and they show that this approach can be applied to develop a machine learning model for predicting the strawberry harvesting time and can be used to provide key decision support information to both farmers and policy makers about optimal harvest times and harvest planning.
Prasanna Srinivasan, V;Balasubadra, K;Saravanan, K;Arjun, V.S;Malarkodi, S
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권6호
/
pp.2168-2187
/
2021
The smart grid replaces the traditional power structure with information inventiveness that contributes to a new physical structure. In such a field, malicious information injection can potentially lead to extreme results. Incorrect, FDI attacks will never be identified by typical residual techniques for false data identification. Most of the work on the detection of FDI attacks is based on the linearized power system model DC and does not detect attacks from the AC model. Also, the overwhelming majority of current FDIA recognition approaches focus on FDIA, whilst significant injection location data cannot be achieved. Building on the continuous developments in deep learning, we propose a Deep Learning based Locational Detection technique to continuously recognize the specific areas of FDIA. In the development area solver gap happiness is a False Data Detector (FDD) that incorporates a Convolutional Neural Network (CNN). The FDD is established enough to catch the fake information. As a multi-label classifier, the following CNN is utilized to evaluate the irregularity and cooccurrence dependency of power flow calculations due to the possible attacks. There are no earlier statistical assumptions in the architecture proposed, as they are "model-free." It is also "cost-accommodating" since it does not alter the current FDD framework and it is only several microseconds on a household computer during the identification procedure. We have shown that ANN-MLP, SVM-RBF, and CNN can conduct locational detection under different noise and attack circumstances through broad experience in IEEE 14, 30, 57, and 118 bus systems. Moreover, the multi-name classification method used successfully improves the precision of the present identification.
The digital map expresses natural topography and artificial things with 3D position coordinates in the computer such as the road, railway, building, river, mountain, paddy and dryland. Therefore, those should contribute to the information-oriented society by maintaining information and providing it to users quickly. However it is difficult to maintain the most recent topographic information all the time because of restricted budget and time. The purpose of this study is to investigate and analyze the updating area of the digital map using remotely sensed data, and to furnish the useful information reducing cost and time. To predict updating area of the digital map, we applied the urban changes analysis method to Landsat TM images from produced date of the digital map to up-to-date. Classification method for urban change analysis applied single band process algorithm. This study presents that updating area of the digital map is predicted by only the rate of 40% on total research area.
본 논문은 WBAN(Wireless Body Area Network) 환경에 기반한 스마트 오브젝트(Smart Object)의 개발에 대한 논문이다. 다양한 기능을 가진 컴퓨팅 디바이스를 장착한 스마트 오브젝트가 많이 개발되면서, 사용자에게 가중되는 소지품으로써의 수많은 기기, 도구들을 사용자가 하나하나 관리하기에는 역부족이므로, 이를 분류하고 관리함으로써 사용자는 단순히 자신들이 가진 스마트 오브젝트의 기능만을 활용하게 해주는 스마트 오브젝트의 개인 네트워크 화하는 기기의 필요성이 증대된 가운데, 이러한 형태의 오브젝트를 개발함에 있어 어떠한 기술들이 필요하고 어떠한 요소들을 갖춰 설계 해 나가야 할지에 대한 최적화된 설계 기준을 분석하고 개발 방향을 제시하고자 한다.
센서 및 초근거리 통신 기술의 발전으로 다양한 사물인터넷 서비스가 등장하였다. 현재 사물인터넷 서비스는 단일화된 서비스만을 제공하고 있지만 서비스들이 융합된 새로운 서비스로 발전되고 있다. 서비스 융합시 발생할 수 있는 프로토콜의 다양성, 모듈의 중복성등의 문제를 해결하기 위하여 통합 서비스 플랫폼의 필요성이 대두되었다. 이에 본 연구에서는 보다 효율적인 통합 서비스 플랫폼을 제공하기 위한 기반 연구로 사물인터넷 서비스 분류 알고리즘을 제안한다. 제안하는 서비스 분류 알고리즘은 서비스 별 세부 동작을 기반으로 구성된다. 그리고 후속 연구로 실제 서비스에 제안한 서비스 분류알고리즘을 적용하여 서비스간 유사도 분석을 통한 서비스 그룹화에 관한 연구를 진행할 예정이다.
Our courtry's distribrtion business is on the luring point by opening the market to foreign countries from this year. It can be said that industrial goods are intermediated goods for the production of other goods or service So it requires quality and specialty than any other things. But the lack of understanding, small scale and classification by non-productive industry by government bring about difficulty to the distribution itself and other fields. Industrial goods have a long distribution channel. This distribution stracture can be reduce the channel by establishment of distribution complex. Establishment of distribution complex will strengthen the role of quality management and go far toward quality improvement. This study examine the distribution status of industrial goods, problems and study the extablishment of complex and expected affect.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권6호
/
pp.2333-2353
/
2020
This paper proposes a novel data prioritization and transmission mechanism to minimize the number of packets transmitted and reduce network overload using the constrained application protocol (CoAP) in resource-constrained networks. The proposed scheme adopts four classification parameters to classify and prioritize data from a sensor. With the packet prioritization scheme, the sensed data having the lowest priority is only delivered using the proposed keep-alive message notification to decrease the number of packets transmitted. The performance evaluation demonstrates that the proposed scheme shows the improvement of resource utilization in energy consumption, and bandwidth usage compared with the existing CoAP methods. Furthermore, the proposed scheme supports quality-of-service (QoS) per packet by differentiating transmission delays regarding priorities.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.