• Title/Summary/Keyword: thin-slicing

Search Result 12, Processing Time 0.026 seconds

경취 재료의 ELID(Electrolytic In-Process Dressing) 경면 연삭 절단에 관한 연구

  • 김화영;안중환;부산대기계공학부
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.65-68
    • /
    • 1995
  • A slicing method by thin diamond blade is widely usd slicing of hard and brittle materials such as ceramics,glass and ferrite etc.. In this study, a new slicing system which realizes highly efficient and mirror surface slicing was developed by applying ELID-grinding with metallic bond diamond blades and its performance was evaluated. Hard and brittle materials such as ceramics,glass and ferrite were used as workpiece. Metallic bond diamond blades with grit sizes #325 and #2000 were used. Experimental results show that highly efficient slicing and good mirror surface can be successfully obtained using the developed slicing system with ELID features.

  • PDF

Research On Solutions To Slicing Errors In FDM 3D Printing Of Thin-walled Structures

  • QINGYUAN ZHANG;Byung-Chun Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.176-181
    • /
    • 2024
  • The desktop-level 3D printing machines makes it easier for independent designers to produce collectible models. Desktop 3D printers that use FDM (Fused Deposition Modeling) technology usually use a minimum nozzle diameter of 0.4mm. When using FDM printers to make Gunpla models, Thin slice structures are prone to slicing errors, which lead to deformation of printed objects and reduction in structural strength. This paper aims to analyze the printing model that produces errors, control a single variable among the three variables of slice layer height, slice wall thickness and filament type for comparative testing, and find a way to avoid gaps. To provide assistance for using FDM printers to build models containing thin-walled structures.

Sub-regional Slicing Method (SSM) to Fabricate 3D Microstructure Effectively in Nano-Stereolithography Process (극미세 3차원 형상제작의 효율성 향상을 위한 영역분할 단면법에 관한 연구)

  • Park S.H.;Lim T.W.;Yang D.Y.;Yi S.Y.;Kong H.J.;Lee K.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.264-267
    • /
    • 2005
  • A subregional slicing method (SSM) is proposed to increase the nanofabrication efficiency of a nano-stereolithography (NSL) process based on two-photon polymerization (TPP). The NSL process can be used to fabricate 3D microstructures via the accumulation of layers of uniform thickness; hence, the precision of the final 3D microstructure depends on the layer thickness. The use of a uniform layer thickness means that, to fabricate a precise microstructure, a large number of thin slices is inevitably required. leading to long processing times. In the SSM proposed here, however, the 3D microstructure is divided into several subregions on the basis of the geometric slope, and then each of these subregions is uniformly sliced with a layer thickness determined by the geometric slope characteristics of each subregion. Subregions with gentle slopes are sliced with thin layer thicknesses, whereas subregions with steep slopes are sliced with thick layer thicknesses. Here, we describe the procedure of the SSM based on TPP, and discuss the fabrication efficiency of the method through the fabrication of a 3D microstructure.

  • PDF

Thermodynamic Consideration for SiC synthesis by Using Sludged Silicon Powder (폐슬러지를 이용한 SiC 합성에 관한 열역학적 고찰)

  • 최미령;김영철
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.1
    • /
    • pp.21-24
    • /
    • 2003
  • Sludged silicon powders that are generated during silicon ingot slicing process have potential usage as silicon source in fabricating silicon carbide powders by adding carbon. A thermodynamic calculation is performed to consider a plausible formation condition for the silicon carbide powders. A thin silicon oxide layer around silicon powder is sufficient to supply equilibrium oxygen partial pressure at the formation temperature($1400^{\circ}C$) of the silicon carbide in the Si-C-O ternary system. Formation of silicon carbide by using the sludged silicon powders is more efficient than by using silicon oxide powders.

  • PDF

Assessment of Cancellous Bone of Mandible by Multifunctional Panoramic X-Ray Machine (다기능 파노라마 방사선촬영장치를 이용한 하악해면골질의 평가)

  • Ko Jae-Kyung;Kim Jae-Duk
    • Imaging Science in Dentistry
    • /
    • v.30 no.1
    • /
    • pp.16-22
    • /
    • 2000
  • Purpose : To evaluate the bone densities measured on copper-equivalent image of cross sectional view of mandibular edentulous premolar area obtained by multifuctional panoramic x-ray machine, PM 2002 CC with transversal slicing system. Materials and Methods: Panoramic cross sectional views with 8 mm focal layer of aluminum step and blocks, of hydroxyapatite (RA) step, 6 HA blocks and copper step wedge having 0.03 mm thickness of each step, and of 3 bone blocks cutted by 8 mm thickness mesiodistally and a dry mandible with copper step wedge were taken by using transversal slicing system in PM 2002 Cc. All reference-equivalent images were made and analyzed by NIH image program. Results: The average copper-equivalent value of cancellous bone of bone blocks on the panoramic cross sectional view was 0.026 ± 0.020 mm Cu. The calculated average bone density was 0.38g/cm². There was no significant difference (P>0.1) between the bone densities on intraoral digital view and on the panoramic digital cross sectional view. Conclusion: The copper-equivalent image of panoramic digital cross sectional view obtained by PM 2002 CC with very thin copper step wedge was supposed to be useful to measure the bone density of cancellous bone of mandible at the premolar edentulous area.

  • PDF

Sentinel Node Biopsy Examination for Breast Cancer in a Routine Laboratory Practice: Results of a Pilot Study

  • Khoo, Joon-Joon;Ng, Chen-Siew;Sabaratnam, Subathra;Arulanantham, Sarojah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1149-1155
    • /
    • 2016
  • Background: Examination of sentinel lymph node (SLN) biopsies provides accurate nodal staging for breast cancer and plays a key role in patient management. Procurement of SLNs and the methods used to process specimens are equally important. Increasing the level of detail in histopathological examination of SLNs increases detection of metastatic tumours but will also increase the burden of busy laboratories and thus may not be carried out routinely. Recommendation of a reasonable standard in SLN examination is required to ensure high sensitivity of results while maintaining a manageable practice workload. Materials and Methods: Twenty-four patients with clinically node-negative breast cancer were recruited. Combined radiotracer and blue dye methods were used for identification of SLNs. The nodes were thinly sliced and embedded. Serial sectioning and immunohistochemical (IHC) staining against AE1/AE3 were performed if initial H&E sections of the blocks were negative. Results: SLNs were successfully identified in all patients. Ten cases had nodal metastases with 7 detected in SLNs and 3 detected only in axillary nodes (false negative rate, FNR=30%). Some 5 out of 7 metastatic lesions in the SLNs (71.4%) were detected in initial sections of the thinly sliced tissue. Serial sectioning detected the remaining two cases with either micrometastases or isolated tumour cells (ITC). Conclusions: Thin slicing of tissue to 3-5mm thickness and serial sectioning improved the detection of micro and macro-metastases but the additional burden of serial sectioning gave low yield of micrometastases or ITC and may not be cost effective. IHC validation did not further increase sensitivity of detection. Therefore its use should only be limited to confirmation of suspicious lesions. False negative cases where SLNs were not involved could be due to skipped metastases to non-sentinel nodes or poor technique during procurement, resulting in missed detection of actual SLNs.

Effects of Tensile Properties and Microstructure on Abrasive Wear for Ingot-Slicing Saw Wire (잉곳 슬라이싱용 Saw Wire의 연삭마모에 미치는 인장특성과 미세조직의 영향)

  • Hwang, Bin;Kim, Dong-Yong;Kim, Hoi-Bong;Lim, Seung-Ho;Im, Jae-Duk;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.334-340
    • /
    • 2011
  • Saw wires have been widely used in industries to slice silicon (Si) ingots into thin wafers for semiconductor fabrication. This study investigated the microstructural and mechanical properties, such as abrasive wear and tensile properties, of a saw wire sample of 0.84 wt.% carbon steel with a 120 ${\mu}M$ diameter. The samples were subjected to heat treatment at different linear velocities of the wire during the patenting process and two different wear tests were performed, 2-body abrasive wear (grinding) and 3-body abrasive wear (rolling wear) tests. With an increasing linear velocity of the wire, the tensile strength and microhardness of the samples increased, whereas the interlamellar spacing in a pearlite structure decreased. The wear properties from the grinding and rolling wear tests exhibited an opposite tendency. The weight loss resulting from grinding was mainly affected by the tensile strength and microhardness, while the diameter loss obtained from rolling wear was affected by elongation or ductility of the samples. This result demonstrates that the wear mechanism in the 3-body wear test is much different from that for the 2-body abrasive wear test. The ultra-high tensile strength of the saw wire produced by the drawing process was attributed to the pearlite microstructure with very small interlamellar spacing as well as the high density of dislocation.

Cross-Sectional Transmission Electron Microscopy Sample Preparation of Soldering Joint Using Ultramicrotomy

  • Bae, Jee-Hwan;Kwon, Ye-Na;Yang, Cheol-Woong
    • Applied Microscopy
    • /
    • v.46 no.3
    • /
    • pp.167-169
    • /
    • 2016
  • Solder/electroless nickel immersion gold (ENIG) joint sample which is comprised of dissimilar materials with different mechanical properties has limited the level of success in preparing thin samples for transmission electron microscopy (TEM). This short technical note reports the operation parameters for ultramicrotomy of solder joint sample and TEM analysis results. The solder joint sample was successfully sliced to 50~70 nm thick lamellae at slicing speed of 0.8~1.2 mm/s using a boat-type $45^{\circ}$ diamond knife. Ultramicrotomy can be applied as a routine sample preparation technique for TEM analysis of solder joints.

GaN epitaxial growths on chemically and mechanically polished sapphire wafers grown by Bridgeman method (수평 Bridgeman법으로 성장된 사파이어기판 가공 및 GaN 박막성장)

  • 김근주;고재천
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.5
    • /
    • pp.350-355
    • /
    • 2000
  • The fabrication of sapphire wafer in C plane has been developed by horizontal Bridgeman method and GaN based semiconductor epitaxial growth has been carried out in metal organic chemical vapour deposition. The single crystalline ingot of sapphire has been utilized for 2 inch sapphire wafers and wafer slicing and lapping machines were designed. These several steps of lapping processes provided the mirror-like surface of sapphire wafer. The measurements of the surface flatness and the roughness were carried out by the atomic force microscope. The GaN thin film growth on the developed wafer was confirmed the wafer quality and applicability to blue light emitting devices.

  • PDF

Calculation of Rotation Angle of the Linear Hotwire Cutting System for VLM-s (VLM-S용 선형열선절단기의 회전각 계산)

  • Lee, Sang-Ho;An, Dong-Gyu;Yang, Dong-Yeol;Dong Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.87-94
    • /
    • 2002
  • Most of Rapid Prototyping (RP) process adopt a solid Computer Aided Design (CAD) model, slicing into thin layers of uniform, but not necessarily constant, thickness in the building direction. Each cross-sectional layer is successive1y deposited and at the same time, bonded onto the previous layers; the stacked layers form a physical part of the model. The objective of this study is to develop a method for calculating the rotation angle ($$\theta$_x, $\theta$_y$) of hotwire of the cutting system in the three-dimensional space for the Variable Lamination Manufacturing process using expandable polystyrene foam sheet (VLM-S). In order to examine the applicability of the developed method to VLM-S, various three-dimensional shapes. such as a screw, an extruded cross, and free surface bodies such as miniatures of the monkey(a figure of Sonokong), were made using the data obtained form the method.