• 제목/요약/키워드: thin composite laminate

검색결과 38건 처리시간 0.019초

Geometrically nonlinear analysis of thin-walled open-section composite beams

  • Vo, Thuc Phuong;Lee, Jae-Hong
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2008년도 춘계 학술발표회 논문집
    • /
    • pp.113-118
    • /
    • 2008
  • This paper presents a flexural-torsional analysis of thin-walled open-section composite beams. A general geometrically nonlinear model for thin-walled composite beams and general laminate stacking sequences is given by using systematic variational formulation based on the classical lamination theory. The nonlinear algebraic equations of present theory are linearized and solved by means of an incremental Newton-Raphson method. Based on the analytical model, a displacement-based one-dimensional finite element model is developed to formulate the problem. Numerical results are obtained for thin-walled composite beams under general loadings, addressing the effects of fiber angle, laminate stacking sequence and loading parameters.

  • PDF

Optimal laminate sequence of thin-walled composite beams of generic section using evolution strategies

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • 제34권5호
    • /
    • pp.597-609
    • /
    • 2010
  • A problem formulation and solution methodology for design optimization of laminated thin-walled composite beams of generic section is presented. Objective functions and constraint equations are given in the form of beam stiffness. For two different problems one for open section and the other for closed section, the objective function considered is bending stiffness about x-axis. Depending upon the case, one can consider bending, torsional and axial stiffnesses. The different search and optimization algorithm, known as Evolution Strategies (ES) has been applied to find the optimal fibre orientation of composite laminates. A multi-level optimization approach is also implemented by narrowing down the size of search space for individual design variables in each successive level of optimization process. The numerical results presented demonstrate the computational advantage of the proposed method "Evolution strategies" which become pronounced to solve optimization of thin-walled composite beams of generic section.

Automatic analysis of thin-walled laminated composite sections

  • Prokic, A.;Lukic, D.;Ladjinovic, Dj.
    • Steel and Composite Structures
    • /
    • 제16권3호
    • /
    • pp.233-252
    • /
    • 2014
  • In this paper a computer program is developed for the determination of geometrical and material properties of composite thin-walled beams with arbitrary open cross-section and any arbitrary laminate stacking sequence. Theory of thin-walled composite beams is based on assumptions consistent with the Vlasov's beam theory and classical lamination theory. The program is written in Fortran 77. Some numerical examples are given, with complete information about input and output.

Mechanical properties of thin-walled composite beams of generic open and closed sections

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • 제21권5호
    • /
    • pp.591-620
    • /
    • 2005
  • A general analytical model for thin-walled composite beams with an arbitrary open/(or/and) closed cross section and arbitrary laminate stacking sequence i.e., symmetric, anti-symmetric as well as un-symmetric with respect to the mid plane of the laminate, is developed in the first paper. All the mechanical properties, mechanical centre of gravity and mechanical shear centre of the cross section are defined in the function of the geometry and the material properties of the section. A program "fungen" and "clprop" are developed in Fortran to compute all the mechanical properties and tested for various isotropic sections first and compared with the available results. The locations of mechanical centre of gravity and mechanical shear centre are given with respect to the fibre angle variation in composite beams. Variations of bending and torsional stiffness are shown to vary with respect to the fibre angle orientations.

A high precision shear deformable element for free vibration of thick/thin composite trapezoidal plates

  • Haldar, S.;Manna, M.C.
    • Steel and Composite Structures
    • /
    • 제3권3호
    • /
    • pp.213-229
    • /
    • 2003
  • A high precision shear deformable triangular element has been proposed for free vibration analysis of composite trapezoidal plates. The element has twelve nodes at the three sides and four nodes inside the element. Initially the element has fifty-five degrees of freedom, which has been reduced to forty-eight by eliminating the degrees of freedom of the internal nodes through static condensation. Plates having different side ratios (b/a), boundary conditions, thickness ratios (h/a=0.01, 0.1 and 0.2), number of layers and fibre angle orientations have been analyzed by the proposed shear locking free element. Trapezoidal laminate with concentrated mass at the centre has also been analyzed. An efficient mass lumping scheme has been recommended, where the effect of rotary inertia has been included. For validation of the present element and formulation few results of isotropic trapezoidal plate and square composite laminate have been compared with those obtained from open literatures. The numerical results for composite trapezoidal laminate have been given as new results.

Investigation on interlaminar shear stresses in laminated composite beam under thermal and mechanical loading

  • Murugesan, Nagaraj;Rajamohan, Vasudevan
    • Steel and Composite Structures
    • /
    • 제18권3호
    • /
    • pp.583-601
    • /
    • 2015
  • In the present study, the combined effects of thermal and mechanical loadings on the interlaminar shear stresses of both moderately thin and thick composite laminated beams are numerically analyzed. The finite element modelling of laminated composite beams and analysis of interlaminar stresses are performed using the commercially available software package MSC NASTRAN/PATRAN. The validity of the finite element analysis (FEA) is demonstrated by comparing the experimental test results obtained due to mechanical loadings under the influence of thermal environment with those derived using the present FEA. Various parametric studies are also performed to investigate the effect of thermal loading on interlaminar stresses generated in symmetric, anti-symmetric, asymmetric, unidirectional, cross-ply, and balanced composite laminated beams of different stacking sequences with identical mechanical loadings and various boundary conditions. It is shown that the elevated thermal environment lead to higher interlaminar shear stresses varying with the stacking sequence, length to thickness ratio, ply orientations under identical mechanical loading and boundary conditions of the composite laminated beams. It is realized that the magnitude of the interlaminar stresses along xz plane is always much higher than those of along yz plane irrespective of the ply-orientation, length to thickness ratios and boundary conditions of the composite laminated beams. It is also observed that the effect of thermal environment on the interlaminar shear stresses in carbon-epoxy fiber reinforced composite laminated beams are increasing in the order of symmetric cross-ply laminate, unidirectional laminate, asymmetric cross-ply laminate and anti-symmetric laminate. The interlaminar shear stresses are higher in thinner composite laminated beams compared to that in thicker composite laminated beams under all environmental temperatures irrespective of the laminate stacking sequence, ply-orientation and boundary conditions.

Polybenzimidazole (PBI) Coated CFRP Composite as a Front Bumper Shield for Hypervelocity Impact Resistance in Low Earth Orbit (LEO) Environment

  • Kumar, Sarath Kumar Sathish;Ankem, Venkat Akhil;Kim, YunHo;Choi, Chunghyeon;Kim, Chun-Gon
    • Composites Research
    • /
    • 제31권3호
    • /
    • pp.83-87
    • /
    • 2018
  • An object in the Low Earth Orbit (LEO) is affected by many environmental conditions unlike earth's surface such as, Atomic oxygen (AO), Ultraviolet Radiation (UV), thermal cycling, High Vacuum and Micrometeoroids and Orbital Debris (MMOD) impacts. The effect of all these parameters have to be carefully considered when designing a space structure, as it could be very critical for a space mission. Polybenzimidazole (PBI) is a high performance thermoplastic polymer that could be a suitable material for space missions because of its excellent resistance to these environmental factors. A thin coating of PBI polymer on the carbon epoxy composite laminate (referred as CFRP) was found to improve the energy absorption capability of the laminate in event of a hypervelocity impact. However, the overall efficiency of the shield also depends on other factors like placement and orientation of the laminates, standoff distances and the number of shielding layers. This paper studies the effectiveness of using a PBI coating on the front bumper in a multi-shock shield design for enhanced hypervelocity impact resistance. A thin PBI coating of 43 micron was observed to improve the shielding efficiency of the CFRP laminate by 22.06% when exposed to LEO environment conditions in a simulation chamber. To study the effectiveness of PBI coating in a hypervelocity impact situation, experiments were conducted on the CFRP and the PBI coated CFRP laminates with projectile velocities between 2.2 to 3.2 km/s. It was observed that the mass loss of the CFRP laminates decreased 7% when coated by a thin layer of PBI. However, the study of mass loss and damage area on a witness plate showed CFRP case to have better shielding efficiency than PBI coated CFRP laminate case. Therefore, it is recommended that PBI coating on the front bumper is not so effective in improving the overall hypervelocity impact resistance of the space structure.

세라믹/유리섬유강화복합재 적층판의 고속충돌에 의한 파괴거동 (Fracture Mechanism of Ceramic/Glass-fiber-reinforced-composites Laminate by High Velocity Impact)

  • 정우균;이우일;김희재;권정원;안성훈
    • 한국정밀공학회지
    • /
    • 제23권5호
    • /
    • pp.170-176
    • /
    • 2006
  • Multi-layered laminate made of ceramic/composite have been developed to prevent penetration by high velocity impact. In this study, three-layered plates consisted of 1) cover layer (glass fiber reinforced polymer), 2) $Al_{2}O_{3}$, ceramic plate, and 3) backing plate (glass fiber reinforced polymer) were fabricated with various conditions and tested for their ballistic protection characteristic. The ceramic composite laminates, with thin backing plate, were completely penetrated by armor piercing projectile. The plate with inserted rubber between ceramic and backing plate showed excellent ballistic protection, though completely penetrated by the second shoot.

An efficient high-order warping theory for laminated plates

  • Deng, Zhongmin;Huang, Chuanyue
    • Structural Engineering and Mechanics
    • /
    • 제22권5호
    • /
    • pp.599-611
    • /
    • 2006
  • The theory with hierarchical warping functions had been used to analyze composite thin-walled structure, laminated beam and had good results. In the present paper, a series of hierarchical warping functions are developed to analyze the cylindrical bending problems of composite lamina. These warping functions which refine through-the-thickness variation of displacements were composed of basic and corrective functions by taking into account of anisotropic, material discontinues, and transverse shear and normal strain. Then the hierarchical finite element method was used to form a numerical algorithm. The distribution of the displacements, in-plane stresses, transverse shear stresses and transverse normal stress for composite laminate were analyzed with the present model. The results show that the present model has precise mechanical response compared with the first deformation transverse theory and the corrective order affects the accuracy of result.

Experimental and numerical investigation on low-velocity impact behaviour of thin hybrid carbon/aramid composite

  • Sojan Andrews Zachariah;Dayananda Pai K;Padmaraj N H;Satish Shenoy Baloor
    • Advances in materials Research
    • /
    • 제13권5호
    • /
    • pp.391-416
    • /
    • 2024
  • Hybrid composite materials are widely used in various load-bearing structural components of micro - mini UAVs. However, the design of thin laminates for better impact resistance remains a challenge, despite the strong demand for lightweight structures. This work aims to assess the low-velocity impact (LVI) behaviour of thin quasi-isotropic woven carbon/ aramid epoxy hybrid laminates using experimental and numerical techniques. Drop tower impact test with 10 J and 15 J impact energies is performed on carbon/epoxy laminates having aramid layers at different sequences and locations. The impact behaviour is experimentally evaluated using force-time, force-deformation, and energy-time histories considering delamination threshold load, peak load, and laminate deflection. Ultrasonic C-scan is performed on the post-impact samples to analyse the insidious damage profile at different impact energies. The experimental data is further utilized to numerically simulate LVI behaviour by employing the representative volume element model. The numerical results are in good agreement with the experimental data. Numerical and experimental approach predicts that the hybrid laminates with aramid layers at both impact and non-impact sides of the laminate exhibits significant improvement in the overall impact behaviour by having a subcritical damage morphology compared to carbon/epoxy laminate. A combined numerical-experimental approach is proposed for evaluating the effective impact performance.