• Title/Summary/Keyword: thin circular disc-type

Search Result 4, Processing Time 0.019 seconds

Design and Acoustic Properties of Piezoelectric Device with the PMN-PT-PZ System (PMN-PT-PZ계를 이용한 압전소자의 설계 및 음향특성)

  • Go, Young-Jun;Seo, Hee-Don;Nam, Hyo-Duk;Chang, Ho-Gyeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.283-286
    • /
    • 2000
  • In this study, the acoustic transducer of a thin circular disc-type with PZT/Metal was manufactured. The piezoelectric transducer with 200kHz resonance frequency was designed by considering the sharp directivity and the sound pressure. The dielectric and piezoelectric properties of 0.5 weight percent $MnO_2$ and NiO doped $0.1Pb(Mg_{1/3}Nb_{2/3})O_3-0.45PbTiO_3-0.42PbZrO_3$ ceramics were investigated aiming at acoustic transducer applications. Also, the acoustic characteristics of a thin circular disc-type with metal-piezoceramics have been Investigated.

  • PDF

A Study on the Acoustic Properties of Acoustic Treansducer with PZT/Metal (PZT/Metal로 구성된 음향변환기의 음향특성에 관한 연구)

  • Kim, Jin-Soo;Kang, Dae-Ha;Kim, So-Jung;Kim, Ho-Gi;Lee, Deok-Chool
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.28-37
    • /
    • 1992
  • In the study, the Acoustic transducer of a thin circular disc-type with PZT/Metal was manufactured. The 'tape casting method' was introduced to prepare the thin disc-type of piezoelectric ceramics. The acoustic characteristics of PZT/Metal acoustic transducer for piezoelectric buzzer and piezoelectric speaker etc. have been studied and analyzed. As a result, the sound pressure level (dB), in the range from -6dB to -14dB, increased with increasing the piezoelectric coeffeicient ($d_{31}$) of ceramics. The optimal conditions of the sound pressure characteristics of acoustic transducer were that the radius ratio(${\eta}$) of ceramics and metal plate is 0.7-0.8 and the thickness ratio(${\beta}$) is 1.0, and the value were -15~-165dB.

  • PDF

Design and Acoustic Properties of Acoustic Device with Metal-Piezoceramic Circular Plate (금속-압전세라믹스로 구성된 음향소자의 설계 및 음향특성)

  • Go Young-Jun;Lee Sang-Wook;Nam Hyo-Duk;Chang Ho-Gyeong
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.275-278
    • /
    • 2000
  • In this study, the acoustic transducer of a thin circular disc-type with PZT/Metal was designed. The dielectric and piezoelectric properties of $0.5wt\%$ $MnO_2$ and NiO doped 0.1Pb($Mg_{1/3}$$Nb_{2/3}$)$O_3$-$0.45PbTiO_3$-$0.45PbZrO_3$ ceramics were investigated aiming at acoustic transducer applications. The vibration characteristics for the laminated circular plate was analyzed for the various thickness and diameter of the piezoceramic layer and metal layer. The acoustic characteristics which is radiated from the acoustic transducer within the finite space was simulated using the finite element method. It has been observed that the characteristics of the sound pressure ard impedance response calculated for the various models of the size and geometry of acoustic transducer.

  • PDF

Design of the Piezoelectric Sounder Using the PMN-PT-PZ (PMN-PT-PZ 계 세라믹스를 이용한 압전 발음체 설계)

  • Ko, Young-Jun;Kim, Hyun-Chool;Nam, Hyo-Duk;Chang, Ho-Gyeong;Woo, Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.12-19
    • /
    • 2001
  • In this study, the physical properties of the piezoelectric sounder with metal-piezoelectric ceramics were analyzed. The dielectric and piezoeletric properties of 0.5wt% MnO$_2$ and NiO doped 0.1Pb(Mg$\_$1/3/Nb$\_$2/3/)O$_3$-0.45PbTiO$_3$-0.45PbZrO$_3$ ceramics were investigated aiming at acoustic transducer applications. The acoustic characteristics of a thin circular disc-type with metal-piezoceramics have been investigated. Also, the acoustic characteristics for the geometrical form of case were investigated. The piezoelectric sounder with 200kHz resonant frequency and 20kHz bandwidth was designed by considering the sharp directivity and the sound pressure.

  • PDF