• Title/Summary/Keyword: thickness optimization

Search Result 776, Processing Time 0.033 seconds

Analysis and Optimization of Permanent Magnet Dimensions in Electrodynamic Suspension Systems

  • Hasanzadeh, Saeed;Rezaei, Hossein;Qiyassi, Ehsan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.307-314
    • /
    • 2018
  • In this paper, analytical modeling of lift and drag forces in permanent magnet electrodynamic suspension systems (PM EDSs) are presented. After studying the impacts of PM dimensions on the permanent magnetic field and developed lift force, it is indicated that there is an optimum PM length in a specified thickness for a maximum lift force. Therefore, the optimum PM length for achieving maximum lift force is obtained. Afterward, an objective design optimization is proposed to increase the lift force and to decrease the material cost of the system by using Genetic Algorithm. The results confirm that the required values of the lift force can be achieved; while, reducing the system material cost. Finite Element Analysis (FEA) and experimental tests are carried out to evaluate the effectiveness of the PM EDS system model and the proposed optimization method. Finally, a number of design guidelines are extracted.

Structural Design of an Automotive Door Using the Kriging Models (크리깅모델을 이용한 자동차 도어의 구조설계)

  • Lee, Kwon-Hee;Bang, Il-Kwon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.146-153
    • /
    • 2007
  • Weight reduction for automobile components has been sought to achieve fuel efficiency and energy conservation. There are two approaches in reducing their weights. One is by using material lighter than steel, and the other is by redesigning their structures. The latter has been performed by adopting hydroforming, tailor weled blank, optimization, etc. In this research, the kriging approximation method and simulated annealing algorithm are applied to the design of a front door made by TWB (Tailor Welded Blank) technology. The design variables are set up as the thicknesses of parts and the positions of parting lines. A thickness set considered as a design variable of each part is not arbitrarily determined but selected from standard products, so it is a discrete set. This research presents the discrete and continuous structural optimization method for an automotive door design.

A Tie-plate Shape Optimization of 24MVA Cast Resin Transformer for Reduction of Stray Loss (24MVA 몰드 변압기의 손실저감을 위한 Tie-Plate의 형상 최적설계 연구)

  • Kim, Yong-Bae;Shin, Pan-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.7
    • /
    • pp.55-61
    • /
    • 2014
  • This paper presents a method to reduce the stray loss of core Tie-Plate of distribution power transformer. The method combines a 3-dimensional FEM with PSO(Particle Swarm Optimization) algorithm to determine the shape of the Tie-Plate that minimizes eddy current and flux-leakage losses. To verify the method a 24MVA distribution(cast-resin) transformer was simulated using one objective function and two design variables with some constraints. The final optimized Tie-Plate has nine($3{\times}3$) slots of 10mm width, 15mm thickness and 25mm distance. After four iterations, the Tie-Plate loss was reduced to about 21 % of the original.

The fire-risks of cost-optimized steel structures: Fire-resistant and hot-rolled carbon steel

  • Garcia, Harkaitz;Cuadrado, Jesus;Biezma, Maria V.;Calderon, Inigo
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.67-75
    • /
    • 2021
  • This work studies the behaviour of a steel portal frame selection under fire exposure, considering both span lengths and fire exposure times as variables. Such structures combine carbon steel (S275), fireproof micro-alloyed steel (FR), and coatings of intumescent paint with variable thicknesses, improving thereby the flame retardant behaviour of the steel structure. Thus, the main contribution of this study is the optimization of the portal frames by combining both steels, analysing the resulting costs influence on the final dimensions. Besides, the topological optimization of each steel component within the structure is also defined, in accordance with the following variables: weather conditions, span, paint thickness, and cost of steel. The results mainly confirmed that using both FR and S275 grades with intumescent painting is the Pareto optimum when considering performance, feasibility and costs of such portal frames widely used for industrial facilities.

Cost optimization of segmental precast concrete bridges superstructure using genetic algorithm

  • Ghiamat, R.;Madhkhan, M.;Bakhshpoori, T.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.503-512
    • /
    • 2019
  • The construction of segmental precast concrete bridge is an increase due to its superior performance and economic advantages. This type of bridge is appropriate for spans within 30 to 150 m (100 to 500 ft), known as mega-projects and the design optimization would lead to considerable economic benefits. A box-girder cross section superstructure of balanced cantilever construction method is assessed here. The depth of cross section, (variable along the span linearly), bottom flange thickness, and the count of strands are considered as design variables. The optimum design is characterized by geometry, serviceability, ductility, and ultimate limit states specified by AASHTO. Genetic algorithm (GA) is applied in two fronts: as to the saving in construction cost 8% and as to concrete volume 6%. The sensitivity analysis is run by considering different parameters like span/depth ratio, relation between superstructure cost, span length and concrete compressive strength.

Roll Wccentricity Control for Cold Strip Rolling Processes (냉간압연 공정에의 편심제어)

  • 백기남;류석환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.243-247
    • /
    • 1991
  • A roll eccentricity controller for a tandem cold rolling process is designed to attenuate the outlet thickness deviation due to roll eccentricity. In order to design the controller, the excess stability margin is maximized by solving a standard H.inf. optimization problem under the requirement that ensure disturbance rejection for a class of disturbance. Robust performance of the proposed controller is checked by a computer simulation.

  • PDF

The Optimization of Indium Zinc Oxide Thin Film Process in Color Filter on Array structure

  • Lee, Je-Hun;Kim, Jin-Suek;Jeong, Chang-Oh;Kim, Shi-Yul;Lim, Soon-Kwon;Souk, Jun-Hyung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1244-1247
    • /
    • 2004
  • For obtaining the best panel quality of color filter on array(COA) architecture in TFF LCD, we investigated the influence of deposition temperature, $O_2$ flow, thickness on the optical transmittance, wet etching and adhesion properties of IZO deposited onto each color photo resist(red, green, blue). Average transmittance of the pixel single layer in the visible range(between 380 and 780nm) was mainly affected by thickness and showed maximum at 1250 ${\AA}$ while the thickness showing peak transparency in each R, G, B wavelength was different. The relation was calculated by using bi-layer transmission and reflectance model, which corresponded to experimental data very well. The adhesion of IZO deposited on each color PR was found to have enhanced value except red PR case, compared to that of IZO which was deposited on $SiN_x$. Wet etching pattern linearity was decreased as the thickness increased. The thickness of IZO was one of vital factors in order to optimize overall pixel process for fabricating COA structure.

  • PDF

Optimization of p-i-n amorphous silicon thin film solar cells using simulation (시뮬레이션을 통한 p-i-n 비정질 실리콘 박막 태양전지의 최적화)

  • Park, Seung-Man;Lee, Young-Suk;Jung, Sung-Wook;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.436-436
    • /
    • 2009
  • 현재 상용화되어 있는 결정질 태양전지의 경우 높은 실리콘 가격으로 인해 저가화에 어려움을 격고 있다. 따라서 태양전지 저가화의 한 방법으로 박막태양전지가 주목을 받고 있다. P-I-N 구조의 박막태양전지에서 각 층의 thickness, activation energy, energy bandgap은 고효율 달성을 위한 중요한 요소이다. 본 논문에서는 박막태양전지 P-I-N layer의 가변을 통하여 고효율을 달성하기 위한 simulation을 수행하였다. 가변 조건으로는 p-layer의 thickness, activation energy 그리고 energy bandgap을 단계별로 변화시켰고 i-layer는 thickness를 n-layer는 thickness와 activation energy를 가변하여 최적의 조건을 찾아 분석하였다. 최종 simulation 결과 p-layer의 thickness 5nm, activation energy 0.3eV 그리고 energy bandgap 1.8eV에서, i-layer thickness 400nm, n-layer thickness 30nm, activation energy 0.2eV에서 최고 효율 11.08%를 달성하였다.

  • PDF

Optimization of microcrystaliline silicon thin film solar cells using simulation (i-layer 두께와 back reflect layer 유무가 미세결정 실리콘 박막태양전지에 미치는 영향)

  • Park, Seung-Man;Lee, Young-Suk;Jung, Sung-Wook;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.437-437
    • /
    • 2009
  • 현재 상용화되어 있는 결정질 태양전지의 경우 높은 실리콘 가격으로 인해 저가화에 어려움을 격고 있다. 따라서 태양전지 저가화의 한 방법으로 박막태양전지가 주목을 받고 있다. P-I-N 구조의 박막태양전지에서 I-layer 각 층의 thickness, activation energy, energy bandgap은 고효율 달성을 위한 중요한 요소이다. 본 논문에서는 박막태양전지 P-I-N layer의 가변을 통하여 고효율을 달성하기 위한 simulation을 수행하였다. 가변 조건으로는 p-layer의 thickness, activation energy 그리고 energy bandgap을 단계별로 변화시켰고 i-layer는 thickness를 n-layer는 thickness와 activation energy를 가변하여 최적의 조건을 찾아 분석하였다. 최종 simulation 결과 p-layer의 thickness 5nm, activation energy 0.3eV 그리고 energy bandgap 1.8eV에서, i-layer thickness 400nm, n-layer thickness 30nm, activation energy 0.2eV에서 최고 효율 11.08%를 달성하였다.

  • PDF