• 제목/요약/키워드: thickness loss

검색결과 1,283건 처리시간 0.025초

내부유체를 가진 Pin Fin의 최적화 (고정된 핀 체적 기준) (Optimization of a Pin Fin with inside Fluid (based on Fixed Fin Volume))

  • 강형석
    • 산업기술연구
    • /
    • 제29권B호
    • /
    • pp.3-7
    • /
    • 2009
  • A cylindrical pin fin with inside fluid is optimized based on fixed fin volume by using the one dimensional analytic method. Heat loss from the fin and the pin fin radius for fixed fin volume is presented as a function of the fin length. Temperature variation of the fin with the variation of ambient and inside fluid convection characteristic numbers and fin base thickness is listed. The maximum heat loss at the practical fin length and corresponding optimum fin length and radius are presented as a function of fin base thickness, inside convection characteristic number, fin volume and ambient convection characteristic number. One of the results shows that the optimum pin fin shape becomes relatively fatter as the fin volume increases.

  • PDF

초음속 회전익의 앞전 형상이 공력 성능에 미치는 효과에 대한 수치적 연구 (Numerical Study on The Effects of Blade Leading Edge Shape to the Performance of Supersonic Rotors)

  • 박기철
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.149-155
    • /
    • 2001
  • Recently, it is required to design higher stage pressure ratio compressor while maintaining equal adiabatic efficiency. To increase the stage pressure ratio, blade rotational speed or diffusion factor should be increased. In the case of increasing rotational speed, relative speed of flow at blade leading edge is well supersonic. In supersonic blade, total pressure loss is mainly due to shock wave and blade leading edge thickness should be very thin to minimize the shock wave loss. As a result, the blade is like to be week in terms of mechanical strength and the manufacturing cost is very high because NC machining is necessary. It is also one of big hurdle to overcome to make small compressor. In this paper, the effects of blade leading edge to the performance of supersonic blade In terms of total pressure loss. The efficiency of already known method to make thin blade leading edge from the casted blade with rather thick leading edge thickness is also assessed.

  • PDF

Friction Characteristics of Piston Ring Pack with Consideration of Mixed Lubrication: Parametric Investigation

  • Kim, Ji-Young;Kim, Jee-Woon;Cho, Myung-Rae;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제16권4호
    • /
    • pp.468-475
    • /
    • 2002
  • This paper reports on the friction characteristics of a piston ring pack with consideration of mixed lubrication. The analytical model is presented by using the average flow antral asperity contact model. The effect of operating condition, and design parameters on the MOFT, maximum friction force, and mean frictional power loss are investigated. Piston ring prick shows mixed and hydrodynamic lubrication characteristics. From the predicted results, it was fand that the ring tension and height of surface roughness have great influence on the frictional power losses in a ring pack. Especially, ring tension is a dominant factor for the reduction of friction loss and maintenance of oil film thickness.

허니콤 구조물의 차음특성에 관한 연구 (A Study on Transmission Loss Characteristics of Honeycomb Structure)

  • 김운경;김정태;김관주;김석현
    • 한국소음진동공학회논문집
    • /
    • 제13권1호
    • /
    • pp.19-25
    • /
    • 2003
  • As a test specimen. an aluminum extruded panel with a dimension of 640 mm$\times$740 mm$\times$40mm is considered. This plate has 9 mm thickness if mass is concerned. Based on the FEM modeling in rigidity. the specimen turns out to be 32 mm and 12 mm thickness In isotropic steel plate. Also, the characteristics of transmission loss on the honeycomb structure have been examined experimentally with reverberation chamber. A honeycomb structure follows mass law in above 800 Hz. In order to improve the noise transmission effect in lower frequency, extra damping treatment is suggested. As a conclusion. the examined honeycomb structure Is designed to Improve the bending rigidity, not for the noise reduction.

굽힘진동 감쇠를 위한 구속층의 최적설계에 관한 연구 (A Study on the Optimum Design of Constrained layer for the Damping of Flexural Vibration)

  • 김사수;이민우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.95-101
    • /
    • 1997
  • A general method is presented for the analysis of the damping effectiveness of viscoelastic layer applied to elastic beam. The damping is attributed to the shear deformations of the treatment. Specific results are then given for sandwich beams with dissipative cores. The calculated results by this method are validated by comparison with the experimental results. Optimum design of a viscoelastic damping layer which is constrainedly cohered on a steel beam is discussed from the viewpoint of the modal loss factor. An object function is a loss factor of 3-layered beam and design variable is the thickness of constraining layer and viscoelastic layer. Optimum thickness can be obtained when 3-layered beam has a maximum loss factor.

  • PDF

폴리머 계열 방음패널의 차음특성 비교 분석 (Sound Insulation Properties of Polymer Soundproof Panels)

  • 이우미;이주행;손진희;김일호;박재로;김광수
    • 대한환경공학회지
    • /
    • 제35권8호
    • /
    • pp.592-597
    • /
    • 2013
  • 방음패널의 차음특성은 재료의 면밀도와 소음의 주파수와 높은 상관관계가 있으므로 방음패널의 두께 및 재료의 선택에 있어 실제 도로소음의 특성을 반영하는 것은 매우 중요하다. 본 연구에서는 재료의 경량 및 시공측면에서 수요가 증가하고 있는 플라스틱 소재 중 방음패널로 활용 가능한 소재를 선정하여 도로교통 소음의 주파수에 따른 차음특성을 평가하였다. 대상 패널은 물리적 특성을 조사하여 효율성 및 경제성 평가를 통해 polypropylene (PP)과 high-density polyethylene (HDPE)를 선정하였고 현재 방음패널의 재료로 사용되고 있는 polycarbonate (PC)와 polymethyl methacrylate (PMMA)와의 재료 및 두께에 따른 차음특성을 비교하였다. 그 결과 방음패널의 차음특성은 재료의 면밀도에 비례하여 PC, PMMA, HDPE, 그리고 PP순으로 높은 투과손실치를 나타내었다. 두께별 차음특성의 경우, 방음패널 두께에 비례하여 투과손실이 증가하나 일치효과로 인해 투과손실이 감소하는 주파수가 낮아짐을 확인할 수 있었다. 결론적으로, 저감하고자 하는 소음의 주파수대역을 먼저 파악하고 방음패널의 재질과 두께에 따른 주파수별 차음특성을 파악하여 적용한다면 효과적으로 소음을 저감할 수 있을 것으로 판단된다.

건물 냉난방수배관의 단열성능 향상을 위한 기준 연구 (A Standard Study for Improving Thermal Performance of the Hot and Cold Water Pipe Insulation in Buildings)

  • 최승혁;김유승;윤희원;류형규
    • 한국지열·수열에너지학회논문집
    • /
    • 제13권4호
    • /
    • pp.21-30
    • /
    • 2017
  • Recently, It has increased the importance of building energy saving. Pipe insulation as well as building envelope insulation is to improve energy efficiency and reduce the energy loss. However, there continues to use the old standard for pipe insulation that is one of the most important elements in energy savings in buildings. The purpose of this study is to propose suitable pipe insulation thickness for reducing building energy use. The study also reviews pipe insulation thickness standard in accordance to Korea standard, ASHRAE 90.1 and BS5422 and analyzed through thermal simulation. As a result, it is necessary to apply the performance design method of the pipe insulation thickness to reduce the energy loss of the piping.

씰 투스 간극이 틸팅 패드 저어널 베어링 손실과 온도에 미치는 영향 (Effect on Seal Tooth Clearance on Power Loss and Temperature of Tilting Pad Journal Bearing)

  • 방경보;최용훈;조용주
    • Tribology and Lubricants
    • /
    • 제34권5호
    • /
    • pp.183-190
    • /
    • 2018
  • Tilting pad journal bearing is widely used for steam turbines because of its excellent dynamic stability. As the turbine capacity increases, power loss in the bearings becomes a matter of concern. Power loss in tilting pad journal bearings can be reduced by increasing the bearing clearance and reducing the pad arc length. In this study, the tilting pad journal bearing is tested by changing the seal tooth clearance to verify the static characteristics of the bearing. Bearing power loss and bearing metal temperature are evaluated to compare the bearing's performance and reliability for several test cases. The test bearing is a tilting pad journal bearing with 300.62mm inner diameter and 120.00mm active length. The bearing power loss, its metal temperature, and oil film thickness are measured and evaluated based on the rotor's rotational speed, oil flow rate, and bearing load. Test results show that a tilting pad journal bearing with large seal tooth clearance has 40% lower power loss compared with a bearing with a small seal tooth clearance. As the seal tooth clearance is increased, the power loss of the tilting pad journal bearing decreases. However, with respect to the bearing metal temperatures, a detuning point is observed that makes the minimum bearing metal temperature. Moreover, as the seal tooth clearance is increased, the oil film thickness increases due to high viscosity.

부식 배관의 경계조건이 파손확률에 미치는 영향 (Effect of Boundary Conditions on Failure Probability of Corrosion Pipeline)

  • 이억섭;편장식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.873-876
    • /
    • 2002
  • This paper presents the effect of internal corrosion, external corrosion, material properties, operation condition, earthquake, traffic load and design thickness in pipeline on the failure prediction using a failure probability model. A nonlinear corrosion is used to represent the loss of pipe wall thickness with time. The effects of environmental, operational, and design random variables such as a pipe diameter, earthquake, fluid pressure, a corrosion rate, a material yield stress and a pipe thickness on the failure probability are systematically investigated using a failure probability model for the corrosion pipeline.

  • PDF

부식 배관의 경계조건이 파손확률에 미치는 영향 (Effect of Boundary Conditions on failure Probability of Corrosion Pipeline)

  • 이억섭;편장식
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2002년도 정기학술대회
    • /
    • pp.403-410
    • /
    • 2002
  • This paper presents the effect of internal corrosion, external corrosion, material properties, operation condition, earthquake, traffic load and design thickness in pipeline on the failure prediction using a failure probability model. A nonlinear corrosion is used to represent the loss of pipe wall thickness with time. The effects of environmental, operational, and design random variables such as a pipe diameter, earthquake, fluid pressure, a corrosion rate, a material yield stress and a pipe thickness on the failure probability are systematically investigated using a failure probability model for the corrosion pipeline.

  • PDF