• 제목/요약/키워드: thickness damage

검색결과 733건 처리시간 0.021초

스트레이트 퍼머 및 매직 스트레이트 퍼머에 의한 모발의 변화 (Changes of the hair's by straight permanent and magic straight permanent)

  • 이정은;홍정민
    • 한국패션뷰티학회지
    • /
    • 제1권1호
    • /
    • pp.133-142
    • /
    • 2003
  • As you see, there's no difference of the hair's before and after Magic straight permanent on the example A's hair's thickness, the rate of the tense and the C's rate of the tense, but we can find that there are a lot of difference of the A's strength of the hair, the B's hair's thickness, the strength of the hair, the rate of the tense, the C's hair's thickness, and the strength of the hair on the before and after the Magic straight permanent. That is to say, there are more damage on the condition of normal hair than the one after the Magic straight permanent. On the change of the hair's physical character, before the permanent, the hair's schedule was regular and had the healthy head skin of clear mutual boundary But after the Magic straight permanent wave, the hair's schedule changed to unregural, had unclear mutual boundary of the head skin and the schedule was taken off so the cortex showed up and so on, every condition of the damage was very heavy. On the effect of the treatment, even though it gaves the worth condition of the hair, after the Magic straight permanent formally the change of the hair gives the beautiful straight.

  • PDF

역학적-경험적 덧씌우기 포장 설계 프로그램 개발 (Development of Mechanistic-Empirical Overlay Pavement Design Program)

  • 백철민;양성린;박희문;강태욱
    • 한국도로학회논문집
    • /
    • 제14권4호
    • /
    • pp.19-28
    • /
    • 2012
  • PURPOSES : Recently, the mechanistic-empirical overlay pavement design program that is linked with Korea Pavement Research Program (KPRP) has been developed. This paper focused on establishing the framework and developing the program for the asphalt overlay design over the existing asphalt concrete pavement. METHODS : The overlay pavement design program developed in this study was investigated to assess the sensitivity to various pavement conditions, such as the damage level and thickness of existing layers. In addition, the actual overlay design on currently performing pavement was carried out as a practical example. RESULTS : From the sensitivity analysis, it was found that the thickness and damage level of existing asphalt layer mostly affect the overlay design results. In addition, under the same condition, the overlay pavement would better perform in cold region. From the overlay design with the actual condition, it is noted that the overlay thickness varies depending on the given condition. CONCLUSIONS : Based on various evaluations, it was concluded that the overlay design program developed in this study is a reliable and reasonable tool to be used in the actual pavement design.

Vibration based damage identification of concrete arch dams by finite element model updating

  • Turker, Temel;Bayraktar, Alemdar;Sevim, Baris
    • Computers and Concrete
    • /
    • 제13권2호
    • /
    • pp.209-220
    • /
    • 2014
  • Vibration based damage detection is very popular in the civil engineering area. Especially, special structures like dams, long-span bridges and high-rise buildings, need continues monitoring in terms of mechanical properties of material, static and dynamic behavior. It has been stated in the International Commission on Large Dams that more than half of the large concrete dams were constructed more than 50 years ago and the old dams have subjected to repeating loads such as earthquake, overflow, blast, etc.,. So, some unexpected failures may occur and catastrophic damages may be taken place because of theloss of strength, stiffness and other physical properties of concrete. Therefore, these dams need repairs provided with global damage evaluation in order to preserve structural integrity. The paper aims to show the effectiveness of the model updating method for global damage detection on a laboratory arch dam model. Ambient vibration test is used in order to determine the experimental dynamic characteristics. The initial finite element model is updated according to the experimentally determined natural frequencies and mode shapes. The web thickness is selected as updating parameter in the damage evaluation. It is observed from the study that the damage case is revealed with high accuracy and a good match is attained between the estimated and the real damage cases by model updating method.

윤활유 오염입자에 의한 저널 베어링 손상에 관한 실험적 연구 (Experimental Study on Damage to Journal Bearing due to Contaminating Particles in Lubricant)

  • 송창석;이보라;유용훈;조용주
    • Tribology and Lubricants
    • /
    • 제31권2호
    • /
    • pp.69-77
    • /
    • 2015
  • Recently, there have been reports of severe symptoms of wear in bearings due to foreign substances mixed in lubricants. Therefore, studying the effects of foreign substances (such as combustion products and metallic debris) on the wear characteristics of journal bearings and proposing appropriate management standards for lubricant cleanliness have become necessary. Studies on the effect of particle size and concentration of foreign substances on surface damage have actively progressed in the recent times. These studies indicate the possibility of foreign substances causing direct wear of bearing surfaces. However, experiments conducted until now involve only basic tests such as the Pin-on-Disk test instead of those involving real bearing systems. This study experimentally examines the damage to the surface of a journal bearing due to foreign substances (combustion products and alumina) mixed with the lubricant, as well as the effect of the type and size of particles on its wear characteristics. The study uses an experimental journal bearing similar to a real bearing system for conducting the lubrication test. Hydrodynamic Lubrication (HL) numerical analysis, experiment results, and film parameters are used for calculating the operating conditions required for achieving the desired film thickness, and the results of the analysis are modified for considering the surface roughness. The run-time of the experiment is 10 min including the stabilization process. The experiment results show that alumina particles larger than the minimum film thickness cause significant surface damage.

Protective effects of Panax ginseng berry extract on blue light-induced retinal damage in ARPE-19 cells and mouse retina

  • Hye Mi Cho;Sang Jun Lee;Se-Young Choung
    • Journal of Ginseng Research
    • /
    • 제47권1호
    • /
    • pp.65-73
    • /
    • 2023
  • Background: Age-related macular degeneration (AMD) is a significant visual disease that induces impaired vision and irreversible blindness in the elderly. However, the effects of ginseng berry extract (GBE) on the retina have not been studied. Therefore, this study aimed to investigate the protective effects of GBE on blue light (BL)-induced retinal damage and elucidate its underlying mechanisms in human retinal pigment epithelial cells (ARPE-19 cells) and Balb/c retina. Methods: To investigate the effects and underlying mechanisms of GBE on retinal damage in vitro, we performed cell viability assay, pre-and post-treatment of sample, reactive oxygen species (ROS) assay, quantitative real-time PCR (qRT-PCR), and western immunoblotting using A2E-laden ARPE-19 cells with BL exposure. In addition, Balb/c mice were irradiated with BL to induce retinal degeneration and orally administrated with GBE (50, 100, 200 mg/kg). Using the harvested retina, we performed histological analysis (thickness of retinal layers), qRT-PCR, and western immunoblotting to elucidate the effects and mechanisms of GBE against retinal damage in vivo. Results: GBE significantly inhibited BL-induced cell damage in ARPE-19 cells by activating the SIRT1/PGC-1α pathway, regulating NF-kB translocation, caspase 3 activation, PARP cleavage, expressions of apoptosis-related factors (BAX/BCL-2, LC3-II, and p62), and ROS production. Furthermore, GBE prevented BL-induced retinal degeneration by restoring the thickness of retinal layers and suppressed inflammation and apoptosis via regulation of NF-kB and SIRT1/PGC-1α pathway, cleavage of caspase 3 and PARP, and expressions of apoptosis-related factors in vivo. Conclusions: GBE could be a potential agent to prevent dry AMD and progression to wet AMD.

CFRP/GFRP 적층복합재의 두께가 혼합모드 균열거동과 AE에 미치는 영향 (The Effect of the CFRP/GFRP Composite Thickness on AE Characteristics and Mixed Mode Crack Behavior)

  • 윤유성;김다진솔;권오헌
    • 한국안전학회지
    • /
    • 제29권6호
    • /
    • pp.9-14
    • /
    • 2014
  • Recently many efforts and researches have been done to cope with industrial facilities that require a low energy machines due to the gradual depletion of the natural resources. The fiber-reinforced composite materials in general have good properties and have the proper mechanical properties according to the change of the ply sequences and fiber distribution types. However, in the fiber-reinforced composite material, there are several problems, including fiber breaking, peeling, layer lamination, fiber cracking that can not be seen from the metallic material. Particularly, the fracture and delamination are likely to be affected by the thickness of the stacking laminates when the bi-material laminated structure is subjected to a load of the mixed mode. In this study, we investigated the effect of the thickness ratio of the difference in the CFRP/GFRP bi-material laminate composites by measuring the cracking behavior and the AE characteristics in a mixed mode loading, which may be generated in the actual structure. The results show that the thickness of the CFRP becomes more thick, the mode I energy release rate becomes a larger, and also the influence of mode I is greater than that of mode II. In addition, AE amplitude which shows the level of the damage in the structure was obtained the more damage in the CFRP with the thin thickness.

고낙하추 충격시험기를 이용한 스티칭된 샌드위치 복합재의 저에너지 충격거동 연구 (Impact Behaviors of Stitched Sandwich Composites Under Low Energy Impact Using Drop Weight Impact Tester)

  • 윤성호;이상진;조세현
    • Composites Research
    • /
    • 제12권5호
    • /
    • pp.54-64
    • /
    • 1999
  • 본 연구에서는 낙하추 방식의 충격시험기를 이용하여 스티칭된 샌드위치 복합재의 저에너지 충격거동을 조사하였다. 스티칭된 샌드위치 복합재는 유리섬유직물의 면재와 우레탄 폼의 코아로 구성되어 있으며 위쪽 면재와 아래쪽 면재는 폴리에스터 보강섬유로 코아의 두께방향을 따라 스티칭하여 일체형으로 결합되어 있다. 이때 코아의 두께가 충격거동에 미치는 영향을 조사하기 위해 코아의 두께를 달리한 네 종류의 스티칭된 샌드위치 복합재를 고려하였다. 스티칭된 샌드위치 복합재에 작용되는 충격조건은 낙하추의 질량과 낙하추의 낙하높이를 조절함으로써 변화시켰다. 연구결과에 따르면 코아의 두께, 낙하추의 낙하높이, 그리고 낙하추의 질량 등의 변화는 스티칭된 샌드위치 복합재에서의 충격하중, 충격체와의 접촉시간, 면재에 형성된 변형율 등에 영향을 미침을 알 수 있었다. 또한 스티칭된 샌드위치 복합재는 스티칭부의 보강효과로 인해 손상을 억제시킬 분 아니라 손상이 발생한 경우에도 구조물로서 역할을 담당할 수 있다. 그러나 스티칭된 샌드위치 복합재를 효율적으로 기존의 구조물에 적용하기 위해서는 스티칭부에서의 수지함침성을 개선할 수 있는 제작공법의 연구가 필요하다.

  • PDF

저속충격에 의한 복합재료 적층판의 손상 (Damage of Composite Laminates by Low-Velocity Impact)

  • 남기우;안석환
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.284-288
    • /
    • 2003
  • This study was investigated the nondestructive characteristics of the damage caused by low-velocity impact on symmetric cross-ply laminates. These laminates were $[0^{\circ}/90^{\circ}]{_{16s,}}\;{_{24s,}}\;{_{32s,}}\;{_{48s}}$, that is, the thickness was 2, 3, 4 and 6 mm. The impact machine, model 8250 Dynatup Instron, was used a drop-weight type with gravity. The impact velocities used in experiment were 0.75, 0.90, 1.05, 1.20 and 1.35 m/sec. The load and deformation were increased as impact velocity increase. Even if the load increased with laminates thickness in same impact velocity, the deformation decreased. The extensional velocity was a quick as laminate thickness increase in same impact velocity and as impact velocity increase in same laminate thickness. In ultrasonic scans, damaged area was represented an dimmed zone. This is due to the fact that the wave, after having been partially reflected by the defects, has not enough energy to tough the oposite side or to come back from it. The damaged laminate areas were different according to the laminate thickness and the impact velocity. The extensional velocities became lower in if direction and higher in $0^{\circ}$ direction when the size of the defects increases. But, it was difficult to draw any conclusion for the extensional velocities in $45^{\circ}$ direction.

  • PDF

저속충격에 의한 복합재료 적층판의 손상 (Damage of Composite Laminates by Low-Velocity Impact)

  • 안석환;김진욱;도재윤;김현수;남기우
    • 한국해양공학회지
    • /
    • 제19권1호
    • /
    • pp.39-43
    • /
    • 2005
  • The study investigated the nondestructive characteristics of damage, caused by law-velocity impact, on symmetric cross-ply laminates, composed of [0o/90o]16s, 24s, 32s, 48s. The thickness of the laminates was 2, 3, 4 and 6 mm, respectively. The impact machine used, Model 8250 Dynatup Instron, was a drop-weight type that employed gravity. The impact velocities used in this experiment were 0.75, 0.90, 1.05, 1.20 and 1.35 m/sec, respectively. Both the load and the deformation increased when the impact velocity was increased. Further, when the load increased with the laminate thickness in the same impact velocity, the deformation still decreased. The extensional velocity was quick, as the laminate thickness increased in the same impact velocity and the impact velocity increased in the same laminate thickness. In the ultrasonic scans, the damaged area represented a dimmed zone. This is due to the fact that the wave, after the partial reflection by the deflects, does not have enough energy to touch the opposite side or to come back from it. The damaged laminate areas differed, according to the laminate thickness and the impact velocity. The extensional velocities are lower in the 0o direction and higher in the 90o direction, when the size of the defect increases. However, it was difficult to draw any conclusion for the extensional velocities in the 45o direction.

Speedy Two-Step Thermal Evaporation Process for Gold Electrode in a Perovskite Solar Cell

  • Kim, Kwangbae;Park, Taeyeul;Song, Ohsung
    • 한국재료학회지
    • /
    • 제28권4호
    • /
    • pp.235-240
    • /
    • 2018
  • We propose a speedy two-step deposit process to form an Au electrode on hole transport layer(HTL) without any damage using a general thermal evaporator in a perovskite solar cell(PSC). An Au electrode with a thickness of 70 nm was prepared with one-step and two-step processes using a general thermal evaporator with a 30 cm source-substrate distance and $6.0{\times}10^{-6}$ torr vacuum. The one-step process deposits the Au film with the desirable thickness through a source power of 60 and 100 W at a time. The two-step process deposits a 7 nm-thick buffer layer with source power of 60, 70, and 80 W, and then deposits the remaining film thickness at higher source power of 80, 90, and 100 W. The photovoltaic properties and microstructure of these PSC devices with a glass/FTO/$TiO_2$/perovskite/HTL/Au electrode were measured by a solar simulator and field emission scanning electron microscope. The one-step process showed a low depo-temperature of $88.5^{\circ}C$ with a long deposition time of 90 minutes at 60 W. It showed a high depo-temperature of $135.4^{\circ}C$ with a short deposition time of 8 minutes at 100 W. All the samples showed an ECE lower than 2.8 % due to damage on the HTL. The two-step process offered an ECE higher than 6.25 % without HTL damage through a deposition temperature lower than $88^{\circ}C$ and a short deposition time within 20 minutes in general. Therefore, the proposed two-step process is favorable to produce an Au electrode layer for the PSC device with a general thermal evaporator.