• Title/Summary/Keyword: thermostable alkaline protease

Search Result 9, Processing Time 0.026 seconds

Minor Thermostable Alkaline Protease Produced by Thermoactinomyces sp. E79

  • Kim, Young-Ok;Lee, Jung-Kee;Sunitha, Kandula;Kim, Hyung-Kwoun;Oh, Tae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.469-474
    • /
    • 1999
  • Thermoactinomyces sp. E79 produced two types of thermostable alkaline proteases extracellularly. A minor protease was separated from a major protease by using DEAE-column chromatography. This enzyme was purified to homogeneity by ammonium sulfate and DEAE-Sepharose ion-exchange chromatography. The purified minor protease showed different biochemical properties compared to the major protease. The molecular mass of the purified enzyme was estimated by SDS-PAGE to be 36 kDa. Its optimum temperature and pH for proteolytic activity against Hammarsten casein were $70^{\circ}C$ and 9.0, respectively. The enzyme was stable up to$75^{\circ}C$ and in an alkaline pH range of 9.0-11.0. The enzyme was inhibited by phenylmethylsulfonyl fluoride (PMSF) and $Hg^{2+}, indicating that the enzyme may be a cysteine-dependent serine protease. In addition, the enzyme cleaved the endoproteinase substrate, succinyl-Ala-Ala-Pro-Phe-p- nitroanilide, and the $K_m$ value for the substrate was 1.2 mM.

  • PDF

Analysis of Producing of Thermostable Alkaline Protease using Thermoactinomyces sp. E79 (Thermoactinomyces sp. E79를 이용한 내열성 Alkaline 단백질 분해효소 생산:환경인자의 영향)

  • 정상원;박성식;박용철;오태광
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.3
    • /
    • pp.167-171
    • /
    • 2000
  • Analysis of Production of Thermostable Alkaline Protease using Thermoactinomyces sp. E79. Jung, Sang Won, Sung-Sik Park, Yong-Cheol Park" Tae Kwang Oh2, and Jin-Ho Seo*, Department of Food Science and Technology, Seoul National University, Suwon 441-744, Korea, 1lnterdisciplinary program [or Biochemical Engineering & Biotechnology, Seoul National Univer5it}~ Seoul 151 "7421 Koreal 2Microbial Enzyme RU, Korea Research Institute of Bioscience & Biotechnology, Po. Box 1151 Yusong, Taejon 305"6001 Korea - This research was undertaken to analyze fermentation properties of Thermoactinomyces sp. E79 for production of a thermostable alkaline protease, which is able to specifically hydrolyze defatted soybean meal (DSM) to amino acids. TIle optimum pH for cell growth and protease production was pH 6.7, Thermoactinomyces sp. E79 did not grow at pHlO Among carbon sources tested, soluble starch was the best for protease production, while glucose repressed protease production. Tryptone was found to be the best nitrogen source for cell growth and soytone was good tor protease production. Oxygen transfer rate played an important role in producing thermostable alkaline protease. Ma'<..imum values of 6.58 glL of dry cell weight and 43.0 UJmL of protease activity were obtained in a batch fermentation using a 2.5 L jar fermentor at 1.93 X 102 hr-l of volumetric oxygen transfer coeff'jcient (kLa). Addition of 200 mgIL humic acid to the growth medium resulted in 1.64 times higher protease activity and 1.77 times higher cell growth than the case without humic acid addition.

  • PDF

Purification and Characterization of Thermotolerable Alkaline Protease by Alkalophilic Bacillus sp. No. 8-16 (알칼리성 Bacillus sp. No.8-16의 내열ㆍ알칼리성 단백질 분해효소의 정제와 특성)

  • Bae, Moo;Park, Pil-Yon
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.545-551
    • /
    • 1989
  • Thermostable alkaline protease of alkalophilic Bacillus sp. No. 8-16 has been purified, and the properties of the enzyme investigated. The characteristic point of the organism used is especially good growth in alkaline and thermal condition. The alkaline protease of the strain No. 8-16 was purified from crude enzyme by acetone precipitation, CM-cellulose ion exchange chromatography, Sephadex G-100 and Sephadex G-75 gel filtration. Through the series of chromatograpies, the enzyme was purified to homogeneity with specific activity of 37 fold higher than that of the crude broth. Characteristics of the purified enzyme were as follow; $K_m$ value for the enzyme was 1.3 mg/ml, the alkaline protease showed a maximal activity at 7$0^{\circ}C$ and from the pH 6.0 through 12.0, and stable for 1 hr. at 6$0^{\circ}C$. The moleclar weight of the enzyme was estimated to be 33,000 by Sephadex G-100 gel filtration. The activity of the alkaline protease was inhibited by iodoacetic acid and Ag$^+$, Hg$^+$, PMSF (phenylmethylsulfonyl fluoride), and activated by $Ca^{2+}$ and Mn$^{2+}$.

  • PDF

Bacillus licheniformis NS70으로부터 내열성 Alkaline Protease 생산을 위한 배지최적화

  • Koo, Ja-Hyup;Choi, In-Jae;Nam, Hee-Sop;Lee, Hyung-Jae;Shin, Zae-Ik;Oh, Tae-Kwang
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.207-211
    • /
    • 1997
  • Media optimization for the production of thermostable protease specifically hydrolyzing defatted soybean meal (DSM) from Bacillus licheniformis NS70 was performed by two methods, one-at-a-time method and response surface methodology (RSM). The best carbon source and nitrogen source for the protease production were lactose and DSM, respectively. The maximum protease production estimated by RSM was 606 U/L at 1.11% lactose and 0.43% DSM, the value of which was nearly consistent to the experimental value of 599 U/L. Yeast extract suppressed the protease production. The medium pH was slightly increased at the beginning stage of fermentation, and it tended to decrease after 8 hours. The optimal pH for the protease production was 7.2 in the batch fermentation.

  • PDF

Purification and Characterization of a Novel Extracellular Thermostable Alkaline Protease from Streptomyces sp. M30

  • Xin, Yan;Sun, Zhibin;Chen, Qiongzhen;Wang, Jue;Wang, Yicheng;Luogong, Linfeng;Li, Shuhuan;Dong, Weiliang;Cui, Zhongli;Huang, Yan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1944-1953
    • /
    • 2015
  • A novel alkaline protease from Streptomyces sp. M30, SapHM, was purified by ammonium sulfate precipitation, hydrophobic interaction chromatography, and DEAE-Sepharose chromatography, with a yield of 15.5% and a specific activity of 29,070 U/mg. Tryptic fragments of the purified SapHM were obtained by electrospray ionization quadrupole time-of-flight mass spectrometry. Nucleotide sequence analysis revealed that the gene sapHM contained 1,179 bp, corresponding to 392 amino acids with conserved Asp156, His187, and Ser339 residues of alkaline protease. The first 24 amino acid residues were predicted to be a signal peptide, and the molecular mass of the mature peptide was 37.1 kDa based on amino acid sequences and mass spectrometry. Pure SapHM was optimally active at 80℃ in 50 mM glycine-NaOH buffer (pH 9.0), and was broadly stable at 0-50℃ and pH 4.0-9.0. The protease relative activity was increased in the presence of Ni2+, Mn2+, and Cu2+ to 112%, 113%, and 147% of control, respectively. Pure SapHM was also activated by dimethylformamide, dimethyl sulfoxide, Tween 80, and urea. The activity of the purified enzyme was completely inhibited by phenylmethylsulfonyl fluoride, indicating that it is a serine-type protease. The Km and Vmax values were estimated to be 35.7 mg/ml, and 5 × 104 U/mg for casein. Substrate specificity analysis showed that SapH was active on casein, bovine serum albumin, and bovine serum fibrin.

Trypsin Inhibitor from Streptomyces sp. ( Part 1) Isolation of microorganism and purification of the inhibitor (Streptomyces 속 균주가 생성하는 Trypsin Inhibitor (제1보) 균의 분리 및 저해물질의 정제)

  • Yi, Dong-Heui;Seu, Jung-Hwn
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.4
    • /
    • pp.275-281
    • /
    • 1982
  • One strain of Streptomyces sp. (AS-707) isolated from soil was found to produce a biologically active substance that showed a strong inhibitory activity against proteolytic enzymes viz. trypsin, papain, $\alpha$-chymotrypsin, Azotobacter protease, and Bacillus pretense. The substance was separated from culture filtrate by ion exchange column chromatography using Amberlite IRC-50 and CM-cellulose column chromatography. It was found that the recovery yield was 26% as activity basis. The substance was stable in wide pH range from 2.0 to 12.0 at 37$^{\circ}C$, but it was unstable in alkaline pH values at 6$0^{\circ}C$. The activity was thermostable to give 90% activity compared to the intact sample when it was treated at pH5.6 at 10$0^{\circ}C$ for 2 hours.

  • PDF

Cloning, Expression, and Characterization of a New Xylanase from Alkalophilic Paenibacillus sp. 12-11

  • Zhao, Yanyu;Meng, Kun;Luo, Huiying;Yang, Peilong;Shi, Pengjun;Huang, Huoqing;Bai, Yingguo;Yao, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.8
    • /
    • pp.861-868
    • /
    • 2011
  • A xylanase gene, xyn7c, was cloned from Paenibacillus sp. 12-11, an alkalophilic strain isolated from the alkaline wastewater sludge of a paper mill, and expressed in Escherichia coli. The full-length gene consists of 1,296 bp and encodes a mature protein of 400 residues (excluding the putative signal peptide) that belongs to the glycoside hydrolase family 10. The optimal pH of the purified recombinant XYN7C was found to be 8.0, and the enzyme had good pH adaptability at 6.5-8.5 and stability over a broad pH range of 5.0-11.0. XYN7C exhibited maximum activity at $55^{\circ}C$ and was thermostable at $50^{\circ}C$ and below. Using wheat arabinoxylan as the substrate, XYN7C had a high specific activity of 1,886 U/mg, and the apparent $K_m$ and $V_{max}$ values were 1.18 mg/ml and 1,961 ${\mu}mol$/mg/min, respectively. XYN7C also had substrate specificity towards various xylans, and was highly resistant to neutral proteases. The main hydrolysis products of xylans were xylose and xylobiose. These properties make XYN7C a promising candidate to be used in biobleaching, baking, and cotton scouring processes.