• Title/Summary/Keyword: thermostable

Search Result 316, Processing Time 0.031 seconds

Molecular Cloning and Characterization of a Gene Encoding Thermostable Pectinase from Thermotoga maritima

  • Kim, Chung Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.2
    • /
    • pp.137-140
    • /
    • 2014
  • A gene encoding thermostable pectinase (TmPec) was isolated from hyperthermophilic microorganism, Thermotoga maritima. The open reading frame (ORF) of TmPec gene is 1,104 bp long and encodes 367 amino acid residues with a molecular weight of 40,605 Da. To analyze the enzymatic activity and biochemical properties, the ORF of TmPec gene excluding putative signal sequence of 27 amino acids was introduced into the E. coli expression vector, pRSET-B, and overexpressed in E. coli BL21. Protein concentration of purified recombinant TmPec was 1.1 mg/mL with specific activity of 56 U/mg protein on pectin. The recombinant TmPec showed the highest activity at around $85-95^{\circ}C$, and at around pH 6.5. It was stable at temperature below $85^{\circ}C$. In the presence of $Ca^{2+}$, the activity of recombinant TmPec was increased to 146.3% of normal level. In contrast, $Ba^{2+}$ and Mn2+ showed strong inhibition to the recombinant TmPec.

Purification of a Thermostable Recombinant Sulfolobus solfataricus Esterase Expressed in a Mesophilic Host

  • Kim, Seong-Hun;Lee, Seon-Bok
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.501-504
    • /
    • 2000
  • The purification of a thermostable esterase expressed in Escherichia coli was investigated using thermoprecipitation of unclarified cell homogenates followed by after applying the heat-treated lysate to phenyl-sepharose column, and elution with detergent. Heat treatment at $70^{cdot}C$ was capable of removing to E. coli proteins. Specially, the thermoprecipitation with 15% polyethylene glycol 8000 can remove host proteins and nucleic acids efficiently. Various detergents were used to recover the esterase, which was strongly bound to phenyl-sepharose resin. Triton X-100, non-ionic detergent, was found to be the most efficient of all tested detergents.

  • PDF

Optimization of the Production of a Thermostable Antifungal Antibiotic (내열성 항곰팡이 항생물질의 생산 최적화)

  • 신영준;정명주;정영기
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.584-588
    • /
    • 2000
  • The optimum conditions for the production of an antifungal antibiotic from Bacillus sp. YJ-63 were investigated. The oprimumized medium consisted of 1.5% soluble starch, 1% tryptone and 0.5% yeast extract, and temperature and initial medium pH for production were optimal at 35$^{\circ}C$ and pH 6.0, respectively. Production yield was significantly improved by shaking culture using 50 ml medium in 500 ml flasks. Under these conditions, the production of the antifungal antibiotic was growth-dependent, from 35hrs into cultivation to the stationary phase and endospore formation.

  • PDF

Characterization of the recombinant cellulase A from Thermotoga maritima

  • Kim, Chung Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.3
    • /
    • pp.213-216
    • /
    • 2021
  • A gene encoding thermostable cellulase A (TmCelA) was isolated from Thermotoga maritima. The open reading frame of TmCelA gene was 774 bp long which predicted to encode 257 amino acid residues with a molecular weight of 29,732 Da. To examine the biochemical properties, the TmCelA was overexpressed in E. coli BL21, and expressed protein was purified. The optimum temperature of recombinant TmCelA was 90-95 ℃, and the optimum pH of recombinant TmCelA was approximately pH 5.0. Recombinant TmCelA was stable at temperature below 90 ℃.

Isolation and Identification of Thermostable \beta-glycosidase-producing Microorganism from Hot Spring of Volcanic Area at Atagawa in Japan. (일본의 Atagawa 온천지대에서 분리한 내열성 \beta-glycosidase 생성균주의 분리 및 동정)

  • 남은숙;최종우;차성관;안종건
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.2
    • /
    • pp.151-156
    • /
    • 2002
  • This study was performed to obtain the thermostable $\beta$-glycosidase producing bacteria from hot spring of volcanic area at Atagawa in Japan. KNOUC 202 was selected because it showed thermostable $\beta$-glycosidase activity in sodium phosphate buffer(pH 6.8) at $70^{\circ}C$ for 4h, and it was identified. The strain was aerobic, asporogenic bacilli, immobile, gram negative, catalase positive, oxidase positive, and pigment-producing. Optimum growth was at $70~72^{\circ}C$, pH 7.0~7.2, and it could grow in the presence of 3% NaCl. The main fatty acids in cell were iso-15:0 and iso-l7:0. 16S rRNA sequence of KNOUC 202 showed 99.9% similarity with that of Thermus thermophilus ATCC 27634(HB8). Based on morphological, physiological, biochemical characteristics, cellular fatty acids profile and 16S rRNA sequence analysis, KNOUC 202 was identified as Thermus thermophilus.

GENETIC AND BIOCHEMICAL ANALYSIS OF A THERMOSTABLE CHITOSANASE FROM Bacillus sp. CK4

  • Yoon, Ho-Geun;Cho, Hong-Yon
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.157-167
    • /
    • 2000
  • A thermostable chitosanase gene from the isolated strain, Bacillus sp. CK4, was cloned, and its complete DNA sequence was determined. The thermostable chitosanase gene was composed of an 822-bp open reading frame which encodes a protein of 242 amino acids and a signal peptide corresponding to a 30 kDa enzyme in size. The deduced amino acid sequence of the chitosanase from Bacillus sp. CK4 exhibits 76.6%, 15.3%, and 14.2% similarities to those from Bacillus subtilis, Bacillus ehemensis, and Bacillus circulans, respectively. C-terminal homology analysis shows that Bacillus sp. CK4 belongs to the Cluster III group with Bacillus subtilis. The size of the gene was similar to that of a mesophile, Bacillus subtilis showing a higher preference for codons ending in G or C. The functional importance of a conserved region in a novel chitosanase from Bacillus sp. CK4 was investigated. Each of the three carboxylic amino acid residues were changed to E50D/Q, E62D/Q, and D66N/E by site-directed mutagenesis. The D66N/E mutants enzymes had remarkably decreased kinetic parameters such as $V_{max}$ and k$\sub$cat/, indicating that the Asp-66 residue was essential for catalysis. The thermostable chitosanase contains three cysteine residues at position 49, 72, and 211. Titration of the Cys residues with DTNB showed that none of them were involved in disulfide bond. The C49S and C72S mutant enzymes were as stable to thermal inactivation and denaturating agents as the wild-type enzyme. However the half-life of the C211S mutant enzyme was less than 60 min at 80$^{\circ}C$, while that of the wild type enzyme was about 90 min. Moreover, the residual activity of C211S was substantially decreased by 8 M urea, and fully lost catalytic activity by 40% ethanol. These results show that the substitution of Cys with Ser at position 211 seems to affect the conformational stability of the chitosanase.

  • PDF

Characterization of a Novel Thermostable Oligopeptidase from Geobacillus thermoleovorans DSM 15325

  • Jasilionis, Andrius;Kuisiene, Nomeda
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1070-1083
    • /
    • 2015
  • A gene (GT-SM3B) encoding a thermostable secreted oligoendopeptidase (GT-SM3B) was cloned from the thermophile Geobacillus thermoleovorans DSM 15325. GT-SM3B is 1,857 bp in length and encodes a single-domain protein of 618 amino acids with a 23-residue signal peptide having a calculated mass of 67.7 kDa after signal cleavage. The deduced amino acid sequence of GT-SM3B contains a conservative zinc metallopeptidase motif (His400-Glu401-X-XHis404). The described oligopeptidase belongs to the M3B subfamily of metallopeptidases and displays the highest amino acid sequence identity (40.3%) to the oligopeptidase PepFBa from mesophilic Bacillus amyloliquefaciens 23-7A among the characterized oligopeptidases. Secretory production of GT-SM3B was used, exploiting successful oligopeptidase signal peptide recognition by Escherichia coli BL21 (DE3). The recombinant enzyme was purified from the culture fluid. Homodimerization of GT-SM3B was determined by SDS-PAGE. Both the homodimer and monomer were catalytically active within a pH range of 5.0–8.0, at pH 7.3 and 40℃, showing the Km, Vmax, and kcat values for carbobenzoxy-Gly-Pro-Gly-Gly-Pro-Ala-OH peptidolysis to be 2.17 ± 0.04 × 10-6 M, 2.65 ± 0.03 × 10-3 µM/min, and 5.99 ± 0.07 s-1, respectively. Peptidase remained stable at a broad pH range of 5.0–8.0. GT-SM3B was thermoactive, demonstrating 84% and 64% of maximum activity at 50℃ and 60℃, respectively. The recombinant oligopeptidase is one of the most thermostable M3B peptidase, retaining 71% residual activity after incubation at 60℃ for 1 h. GT-SM3B was shown to hydrolyze a collagenous peptide mixture derived from various types of collagen, but less preferentially than synthetic hexapeptide. This study is the first report on an extracellular thermostable metallo-oligopeptidase.

A Study on Separation of Thermolabile and Thermostable Pectinesterase from Valencia Orange (Valencia 오렌지에서 내열성 및 비내열성 Pectinesterase 분리 정제)

  • Hou, Won-Nyoung;M.R., Marshall
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.673-679
    • /
    • 1995
  • Pectinesterase(PE) has been definitively established as the causative agent for clarification of citrus juice and gelation of frozen concentrates. This enzyme is present in multiple forms in citrus fruit. Although representing a minor fraction of the total PE activity, thermostable pectinesterase(TSPE) accounts for the severe time/temperature processing treatment required to inactivate PE. This study was undertaken to separate and purify thermolabile pectinesterase(TLPE) and TSPE from the crude PE extracts of Valencia orange rag-pulp powder. The approach taken was to carry out the three kind of chromatographies of CM-Sephadex C-50, Phenyl Sepharose CL-4B and CM-Biogel A to the unheated crude PE or the heated crude PE. All of them used could increase the purity of PEs and, specially, Phenyl Sepharose CL-4B chromatography could separate crude PE as the mixture of PEs into two forms of TLPE and TSPE. The purified TLPE had specific activity of 1,005 units/mg, yield of 13.6% and purification of 35 fold, while the TSPE separated from the unheated crude PE showed specific activity of 3,115 units/mg, yield of 1.5% and purification of 100.5 fold, and another TSPE from the heated crude PE was found to be specific activity of 1,803 units/mg, yield of 15.4% and purification of 140 fold.

  • PDF

A Study on the Extraction of Thermostable Pectinesterase from Valencia Orange (Valencia 오렌지로부터 내열성 Pectinesterase의 추출)

  • Hou, Won-Nyoung;Walker, Brigdet L.
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.658-665
    • /
    • 1995
  • Low yield of a thermostable pectinesterase(TSPE) from citrus fruits has made its detailed study extremely tedious and difficult; therefore, maximizing TSPE extraction is desirable. It is assumed that TSPE is bound to the cell components via ionic linkage and covalent bonds. Therefore, in this study, variations in extraction time, pH, NaCl concentration and commercial enzyme preparations were used to increase the yield of TSPE from Valencia orange. The largest recovery of TSPE, obtained by heating extracted pectinesterase(PE) at $70^{\circ}C\;for\;5{\sim}10$ minute, was achieved using actate buffer(pH 4.14) with 1 M NaCl and 0.2% $Cytolase^{TM}$ 104(a mixture of cellulase, hemicellulase and pectinase; Genecor, Inc). The two aquous phase partitioning with 5.0% Triton X-114 could be used as a tool for separation of thermolabile pectinesterase(TLPE) and TSPE from crude PE. Also, water extraction and $0{\sim}0.3$ ammonium sulfate fractionation could be used for removing non-pectinesterase protein.

  • PDF