• Title/Summary/Keyword: thermosetting

Search Result 150, Processing Time 0.03 seconds

Development of Solid Lubricants for Oil-less Bush (오일리스 부시용 고체윤활제 개발)

  • Kong, Hosung;Han, Hung-Gu;Kim, Jin Uk;Kim, Kyoung Seok;Park, Jong Sik
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.87-93
    • /
    • 2019
  • This work aims to develop a dry lubricant for oilless bush, especially a solid lubricant, thereby creating a coating method with improved properties of anti-friction and load-carrying capacity without oil lubrication. In this work, spherical-shaped powders of thermosetting resin such as polyimide (PI) are mixed with a binder matrix obtained by mixing a fluorocarbon compound resin such as Polytetrafluoroethylene (PTFE) or Ethylene tetra fluoro ethylene (ETFE) with itself or with a non-fluorocarbon thermoplastic resin such as Polyether ether ketone (PEEK). And these dry lubricant mixtures are thickly coated (200-300 mm in the thickness) on the inner surface of the bush by using a wet-typed air-spray deposition method. It was found that the load-carrying capacity of the solid lubricant for excavator bush (60 mm in diameter) that operates under a high load condition (at 40 MPa) is greatly improved owing to the spherical-shaped powders of thermosetting resin. In addition, the coefficient of friction at the sliding surface is also reduced less than 0.1. Thick coating also lowers the contact stress at the edge of a bush that results in better tribological performances. The result suggests that the lubrication performance and durability life of the bush can be remarkably improved even without lubrication (oil or grease).

A Study on the Improvement of Bending Characteristics of 3D Printed Thermoplastic Structures Reinforced at the Lateral Surface using Continuous Fiber Reinforced Thermosetting Composites (열경화성 연속섬유 복합재를 이용해 외측 보강된 3D 프린팅 열가소성 복합재 구조물의 굽힘 특성 향상에 대한 연구)

  • Baek, Un-Gyeong;Nam, Gibeop;Roh, Jae-Seung;Park, Sung-Eun;Roh, Jeong-U
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.136-142
    • /
    • 2021
  • 3D printing technology has the advantage of easy to make various shapes of products without a mold. However, it has a problem such as mechanical properties vary greatly depending on materials and manufacturing conditions. Thus, the need for research of 3D printing technology on ways to reduce manufacturing cost compared to physical properties is increasing. In this study, a 3D printing thermoplastic structure was fabricated using short fiber carbon fiber reinforced nylon filaments. And a method of improving mechanical properties was proposed by reinforcing the outer surface using pultruded continuous fiber-type carbon fiber or glass fiber-reinforced thermosetting composite material. It was confirmed that the bending properties were improved according to the reinforcing position of the stiffener and the type of fiber in the stiffener.

Braided composite rods: Innovative fibrous materials for geotechnical applications

  • Fangueiro, Raul;Rana, Sohel;Gomes Correia, A.
    • Geomechanics and Engineering
    • /
    • v.5 no.2
    • /
    • pp.87-97
    • /
    • 2013
  • In this paper, a novel fibrous material known as axially reinforced braided composite rods (BCRs) have been developed for reinforcement of soils. These innovative materials consist of an axial reinforcement system, comprised of longitudinally oriented core fibres, which is responsible for mechanical performance and, a braided cover, which gives a ribbed surface texture for better interfacial interactions with soils. BCRs were produced using both thermosetting (unsaturated polyester) and thermoplastic (polypropylene) matrices and synthetic (carbon, glass, HT polyethylene), as well as natural (sisal) core fibres. BCRs were characterized for tensile properties and the influence of core fibres was studied. Moreover, BCRs containing carbon fibre in the core composition were characterized for piezoresistivity and strain sensing properties under flexural deformation. According to the experimental results, the developed braided composites showed tailorable and wide range of mechanical properties, depending on the core fibres and exhibited very good strain sensing behavior.

A STUDY ON THE CHEMICAL RECYCLING METHOD OF METAL BRACKET (금속(金屬) Bracket의 화학적(化學的) 재생처리(再生處理) 방법(方法)에 관(關)한 연구(硏究))

  • Bang, Sang-Yong;Lee, Dong-Joo
    • The korean journal of orthodontics
    • /
    • v.20 no.1
    • /
    • pp.103-110
    • /
    • 1990
  • Metal brackets were recycled by variable methods for economic reason. Such recycling methods had a great effect on bracket slot width and bonding strength. Therefore, the recycling methods that don't change the properties of original bracket were suggested. In this study, debonded brackets were recycled with 30 kinds of solvents and bracket surfaces were examined by S.E.M. (Super IIIA, ISI International Scientific Instruments, Japan) and Stero Microscope (Sz-Tr, Olympus Tokyo, Japan) methods. The following results were obtained. 1. Thermosetting resin adhesives (eq. $Monolok^{(R)}$, $Concise^{(R)}$) were swelled most in sulfuric acid (assays 95%) and slightly in alcohol groups. 2. The solvent was exchanged every 24 hours during the brackets were recycled with sulfuric acid (assays 95%). As the passage of time, the adhesives were removed more clearly, and after 72 hours adhesives were nearly detached from bracket base. 3. Chemical recycled metal bracket surface showed no irregular structure by S.E.M. method.

  • PDF

Three-Dimensional Finite Element Analysis of compression Molding of Sheet Molding Compound (SMS 압축성형공정의 3차원 유한요소해석)

  • 김수영;임용택
    • Transactions of Materials Processing
    • /
    • v.4 no.1
    • /
    • pp.39-47
    • /
    • 1995
  • The compression molding of SMC (sheet molding compund) at room temperature was analyzed based on rigid-viscoplastic approach by three dimensional finite element program. The developed program was tested by solving the three dimensional compression of wedge type specimens of aluminum alloys at various processing conditions. The simulation results were compared well to the experimental results available in the literature. based on this comparison the program was proved to be valid and was further applied in solving compression molding of SMC, which is a thermosetting material reinforced with chopped fiber glass. To investigate the effects of friction conditions and mold closing speeds for compression molding of SMC charge at room temperature, compressions of the cylindrical and rectangular shaped SMC were analyzed for various friction conditions and mold closing speeds. The calculated load values were compared to the experimental results for the compression molding of cylindrical specimen.

  • PDF

Effects of Interface Porosity on Dielectric and Piezoelectric Properties of BaTiO3-Polymer Composites of O-3 Type Connectivity (O-3형 BaTiO3-폴리머 복합체의 계면기공율 변화에 따른 유전 및 압전특성)

  • 이형규;김호기
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.5
    • /
    • pp.617-624
    • /
    • 1989
  • Piezoelectric composites of O-3 connectivity were prepared by thermosetting barium titanate-phenolic resin composite under various cruing pressure. Among three kinds of pore in O-3 type ceramic-polymer composite, such as matrix pores, particle pores, and ceramic-polymer interface pores, the effect of interface porosity on the dielectric and piezoelectric constant was investigated. In pure barium titanate ceramics, the porosity factor of dielectric and piezoelectric constants were 5.7 and 5.0, respectively. However, in BaTiO3-polymer composite, the interface porosity factor of the piezoelectric constant was greater than that of the dielectric constant, interface porosity factor b in d33 was 9.8 and in r 4.6. On the other, piezoelectric voltage constant g33 was independent of the porosity of barium titanate ceramics. But in composite system, the piezoelectric voltage constant g33 was decreased with interface porosity.

  • PDF

A Study on the Development of Ship's Stern Tube Sealing System(II) -Based on Face Seals- (선미관 밀봉장치의 개발에 관한 연구 (II) -풰이스 시일을 중심으로-)

  • 김영식;전효중;왕지석;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.5
    • /
    • pp.47-54
    • /
    • 1991
  • The lip seals widely used nowadays in stern tube sealing system of ships have radial sealing contact with shafts or liners, on the other hand the face seals of stern tube sealing system have axial sealing contact with seat. Because of axial sealing contact, the face seals have a large number of merits such as durability of life, simplicity of structure, easy fitting and replacement, etc. In this paper, for the purpose of development of face seals, the fundamental properties of axial sealing contact were analyzed and a trial face seal was designed and manufactured using N.B.R. rubber and Thordon which is widely used for bearing materials. The seal proper of trial face seal was made from N.B.R. rubber and the face insert was made from Thordon, thermosetting resins which are three dimensional, cross linked condensation polylmers. The performance test of trial face seal was carried out on the test bench which was specially designed and manufactured. The results were satisfactory enough to be used in practical stern tube sealing system.

  • PDF

Dimensional Stability of Korean Red Pine Wood Treated with Water-Soluble Melamine-Formaldehyde Resin

  • Han, Gyu-Seong
    • Journal of the Korea Furniture Society
    • /
    • v.20 no.3
    • /
    • pp.247-252
    • /
    • 2009
  • The objective of this study was the dimensional stabilization of Korean red pine (Pinus densiflora) wood by the water-based thermosetting resin. A commercial melamine-formaldehyde resin was impregnated into wood samples and cured. The weight and dimensional change of woods treated by the resin, and the absorption and dimensional behavior of treated woods were investigated. The melamine-formaldehyde resin treatment improved significantly the dimensional stability of pine wood and showed about 40% of antiswelling efficiency. The mechanism of dimensional stabilization was interpreted as the complicated reason, such as bulking effect by the resin in cell wall, mechanical restraint and/or blocking of hygroscopic site by the resin in lumen.

  • PDF

Water diffusion in RTM textile composites for aircraft applications

  • Simar, Aline;Gigliotti, Marco;Grandidier, Jean-Claude;Ammar-Khodja, Isabelle
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.573-583
    • /
    • 2017
  • This paper presents a first step towards the understanding of water diffusion in RTM textile composite materials for aircraft applications and focuses on the development of experimental and numerical approaches to characterize the diffusion kinetics within the material. The method consists in making samples which are representative of the materials architecture and carrying out gravimetric tests on such samples. Analysis of results with the aid of a diffusion model reconstructing the architecture of the samples helps identifying the diffusion behaviour of the material.

The Role of Inorganic Compounds Additions on the Matrix Microtexture Control of C/C Composite (무기화합물 첨가에 의한 C/C복합재료의 매트릭스 조직제어)

  • ;安田榮
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.11
    • /
    • pp.1151-1158
    • /
    • 1997
  • Fracture of uni-directional carbon fiber reinforced carbon matrix composite is strongly dependent on the orientation of basal plane in graphite matrix when it is limited within matrix. The orientation of basal planes are vertically stacked to carbon fiber which results in the weakness for applied tensile or shear force in thermosetting resin derived-carbon matrix composite. Microtextural control of the matrix was tried through chemical interaction between metal carbides and furan resin derived-carbon matrix. SiC and TiO2 addition made the orientation disordered. However, porosity increased due to decomposition of SiC. Interfacial bonding could be controlled by TiO2 addition, but carbon fiber was considerably reacted with TiC during thermal treatment higher than 2$600^{\circ}C$. Therefore, it is desirable to control the thermal treatment temperature at which decomposition of SiC was not serious and TiC/C was not formed eutectoid.

  • PDF