• Title/Summary/Keyword: thermosensitive

Search Result 44, Processing Time 0.029 seconds

Functional Polymeric Materials for Biomedical Application (생체의료용 기능성 고분자 재료의 개발)

  • Sung, Yong-Kiel;Song, Dae-Kyung;Sung, Jung-Suk
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • The development of functional polymeric materials for biomedical application has progressed on the basis of functionality, biocompatibility and biodegradability. In this paper we review the functional polymeric biomaterialsbased systems and propose a range of biomedical applications in the near future. These systems include the functional biodegradable polymers synthesized in our research laboratory, biodegradable polymeric materials, thermosensitive polymeric materials, cationic polymeric materials, non-condensing polymeric biomaterials, bio-polymeric DNA matrix for tissue engineering, and polymeric biomaterials for RNA interference (RNAi) technology.

Saccharide Effect on the Lower Critical Solution Temperature of Poly(organophosphazenes) with Methoxy-poly(ethylene glycol) and Amino Acid Esters as Side Groups

  • Lee, Sang-Beom;Sohn, Youn-Soo;Song, Soo-Chang
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.901-905
    • /
    • 2003
  • The lower critical solution temperature (LCST) of thermosensitive poly(organophosphazenes) with methoxypoly(ethylene glycol) (MPEG) and amino acid esters as side groups was studied as a function of saccharide concentration in aqueous solutions of mono-, di-, and polysaccharides. Most of the saccharides decreased the LCST of the polymers, and the LCST decrease was more prominently observed by saccharides containing a galactose ring, such as D-galactose, D-galactosamine and D-lactose, and also the polysacccharide, 1-6-linked D-dextran effectively decreased the LCST of the polymers. Such an effect was discussed in terms of intramolecular hydrogen bonding of saccharides in polymer aqueous solution. The saccharide effect was found to be almost independent on the kinds of the amino acid esters and MPEG length of the polymers. Such a result implies that the polymer-saccharide interaction in aqueous solution is clearly influenced by the structure of sacchardes rather than by that of the polymers. The acid saccharides such as D-glucuronic and D-lactobionic acid increased the LCST, which seems to be due to their pH effect.

Characterization of the din (damage-inducible) and tin (temperature-inducible) Genes Isolated from Escherichia coli (대장균에서 분리된 din (damage-inducible)과 tin (temperature-inducible) 유전자들의 특성)

  • 백경희
    • Korean Journal of Microbiology
    • /
    • v.29 no.6
    • /
    • pp.392-396
    • /
    • 1991
  • Mu d1(Ap lac) bacteriophage can be used to search for genes which are members of a common regulatory network without having to know the functions of the genes in advance. Aim was for obtaining the loci in the SOS network as well as temperature inducible loci. For this purpose, recA441 allele was used. This allele encodes a thermosensitive recA gene product; thus, the recA441 allele can be activated upon temperature upshift without by external DNA damage. Approximately 10, 000 colonies were screened, and then searched for the colonies which expressed .betha.-galactosidase higher level at 42.deg.C than at 30.deg.C. The strains identified fell into two dlasses; (i) ones in which the increased expression was $recA^{+}$ $lexA^{+}$ -dependent, that is, din(damage-inducible) genes which were due to the activation of recA441 allele and (ii) ones in which the increased expression was $recA^{+}$ $lexA^{+}$ -independent and only temperature-inducible, tin genes. Rough mapping position was obtained for these genes.

  • PDF

Theoretical Conception of Synergistic Interactions

  • Kim, Jin-Kyu;Vladislav G. Petin
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.4
    • /
    • pp.277-286
    • /
    • 2002
  • An increase in the overall biological effect under the combined action of ionizing radiation with another inactivating agent can be explained in two ways. One is the supposition that synergism may attribute to a reduced cellular capacity of damn-ge repair after the combined action. The other is the hypothesis that synergism may be related to an additional lethal or potentially lethal damage that arises from the interaction of sublesions induced by both agents. These sublesions ave considered to be in-effective when each agent is applied separately. Based on this hypothesis, a simple mathematical model was established. The model can predict the greatest value of the synergistic effect, and the dependence of synergy on the intensity of agents applied, as well. This paper deals with the model validation and the peculiarity of simultaneous action of various factors with radiation on biological systems such as bacteriophage, bacterial spores, yeast and mammalian cells. The common rules of the synergism aye as follows. (1) For any constant rate of exposure, the synergy can be observed only within a certain temperature range. The temperature range which synergistically increases the effects of radiation is shifted to the lower temperature fer thermosensitive objects. Inside this range, there is a specific temperature that maximizes the synergistic effect. (2) A decrease in the exposure rate results in a decrease of this specific temperature to achieve the greatest synergy and vice versa. For a constant temperature at which the irradiation occurs, synergy can be observed within a certain dose rate range. Inside this range an optimal intensity of the physical agent may be indicated, which maximizes the synergy. As the exposure temperature reduces, the optimal intensity decreases and vice versa. (3) The recovery rate after combined action is decelerated due to an increased number of irreversible damages. The probability of recovery is independent of the exposure temperature for yeast cells irradiated with ionizing or UV radiation. Chemical inhibitors of cell recovery act through the formation of irreversible damage but not via damaging the recovery process itself.

A Single Natural Variation Determines Cytosolic Ca2+-Mediated Hyperthermosensitivity of TRPA1s from Rattlesnakes and Boas

  • Du, Eun Jo;Kang, KyeongJin
    • Molecules and Cells
    • /
    • v.43 no.6
    • /
    • pp.572-580
    • /
    • 2020
  • Transient receptor potential ankyrin 1 from rattlesnakes (rsTRPA1) and boas (bTRPA1) was previously proposed to underlie thermo-sensitive infrared sensing based on transcript enrichment in infrared-sensing neurons and hyper-thermosensitivity expressed in Xenopus oocytes. It is unknown how these TRPA1s show thermosensitivities that overwhelm other thermoreceptors, and why rsTRPA1 is more thermosensitive than bTRPA1. Here, we show that snake TRPA1s differentially require Ca2+ for hyper-thermosensitivity and that predisposition to cytosolic Ca2+ potentiation correlates with superior thermosensitivity. Extracellularly applied Ca2+ upshifted the temperature coefficients (Q10s) of both TRPA1s, for which rsTRPA1, but not bTRPA1, requires cytosolic Ca2+. Intracellular Ca2+ chelation and substitutive mutations of the conserved cytosolic Ca2+-binding domain lowered rsTRPA1 thermosensitivity comparable to that of bTRPA1. Thapsigargin-evoked Ca2+ or calmodulin little affected rsTRPA1 activity or thermosensitivity, implying the importance of precise spatiotemporal action of Ca2+. Remarkably, a single rattlesnake-mimicking substitution in the conserved but presumably dormant cytosolic Ca2+-binding domain of bTRPA1 substantially enhanced thermosensitivity through cytosolic Ca2+ like rsTRPA1, indicating the capability of this single site in the determination of both cytosolic Ca2+ dependence and thermosensitivity. Collectively, these data suggest that Ca2+ is essential for the hyper-thermosensitivity of these TRPA1s, and cytosolic potentiation by permeating Ca2+ may contribute to the natural variation of infrared senses between rattlesnakes and boas.

Thermosensitive Sol-gel Phase Transition Behavior of Methoxy poly(ethylene glycol)-b-poly($\varepsilon$-caprolactone) Diblock Copolymers (메톡시 폴리(에틸렌 글리콜)-폴리($\varepsilon$-카프로락톤) 공중합체의 온도감응성 솔-젤 전이 거동)

  • 서광수;박종수;김문석;조선행;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.344-351
    • /
    • 2004
  • Poly(ethylene glycol)-based diblock and triblock polyester copolymers stimulating to temperature were studied as injectable biomaterials in drug delivery system because of their nontoxicity, biocompatibility and biodegradability. We synthesized the diblock copolymers consisting of methoxy poly(ethylene glycol) (MPEG) (M$_{n}$=750 g/mole) and poly($\varepsilon$-caprolactone) (PCL) by ring opening polymerization of $\varepsilon$-CL with MPEG as an initiator in the presence of HCl . Et$_2$O. The aqueous solution of synthesized diblock copolymers represented sol phase at room temperature and a sol to gel phase transition as the temperature increased from room temperature to body temperature. To confirm the in vivo gel formation, we observed the formation of gel in the mice body after injection of 20 wt% aqueous solution of each block copolymer. After 2 months, we observed the maintenance of gel without dispersion in mice. In this study, we synthesized diblock copolymers exhibiting sol-gel phase transition and confirmed the feasibility as biomaterials of injectable implantation.n.

RGD-Conjugated Chitosan-Pluronic Hydrogels as a Cell Supported Scaffold for Articular Cartilage Regeneration

  • Park, Kyung-Min;Joung, Yoon-Ki;Park, Ki-Dong;Lee, Sang-Young;Lee, Myung-Chul
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.517-523
    • /
    • 2008
  • A RGD (Arg-Gly-Asp) conjugated chitosan hydrogel was used as a cell-supporting scaffold for articular cartilage regeneration. Thermosensitive chitosan-Pluronic (CP) has potential biomedical applications on account of its biocompatibility and injectability. A RGD-conjugated CP (RGD-CP) copolymer was prepared by coupling the carboxyl group in the peptide with the residual amine group in the CP copolymer. The chemical structure of RGD-CP was characterized by $^1H$ NMR and FT IR. The concentration of conjugated RGD was quantified by amino acid analysis (AAA) and rheology of the RGD-CP hydrogel was investigated. The amount of bound RGD was $0.135{\mu}g$ per 1 mg of CP copolymer. The viscoelastic parameters of RGD-CP hydrogel showed thermo-sensitivity and suitable mechanical strength at body temperature for cell scaffolds (a> 100 kPa storage modulus). The viability of the bovine chondrocyte and the amount of synthesized glycosaminoglycans (GAGs) on the RGD-CP hydrogels were evaluated together with the alginate hydrogels as a control over a 14 day period. Both results showed that the RGD-CP hydrogel was superior to the alginate hydrogel. These results show that conjugating RGD to CP hydro gels improves cell viability and proliferation, including extra cellular matrix (ECM) expression. Therefore, RGD conjugated CP hydrogels are quite suitable for a chondrocyte culture and have potential applications to the tissue engineering of articular cartilage tissue.

Drug Resistance and R. Plasmids of Enterobacteria Isolated from Bovine Udder Infections (젖소 유방염유래(乳房炎由來) 장내세균(腸內細菌)의 약제내성(藥劑耐性) 및 R. Plasmids)

  • Park, Cheong Kyu
    • Korean Journal of Veterinary Research
    • /
    • v.21 no.1
    • /
    • pp.25-31
    • /
    • 1981
  • A total of 250 enteric bacteria (148 Escherichia coli, 41 Klebsiella pneumoniae, 46 Enterobacter spp. and 15 Proteus spp.) isolated from bovine udder infections in 1979 through 1980 were examined for drug resistance and prevalence of R. plasmids. The drug tested were streptomycin (SM), kanamycin (KM), ampicillin (AP), chloramphenicol (CP), tetracycline (TC), gentamicin (GM), oxolinic acid (OA) and nalidixic acid (NA). The detection of R. plasmids was performed with Escherichia coli ML 1410 NAr as the recipient. Of the 148 Escherichia coli isolated, 68(45.9%) were found to be resistant to one or more drugs tested, and about 50% of the resistant strains were multiply resistant. of the 68 drugresistant strains, 13(19.1%) were found to carry R. plasmids which were capable of performing a conjugal transfer. CP resistance was transfered together with the other resistance. Of 41 strains of Klebsiella pneumoniae isolated, 90.2% were resistant to the drugs, alone or in combination thereof. Strains resistant to AP and TC were 63.4%, and 48.8%, respectively. R. plasmids were detected in 78.4% of the drug-resistant strains, and these strains transfered all or a part of their drug resistance pattern. AP and CP resistance were transfered in 100% of AP and CP-resistant strains. Eleven (37.9%) of 29 R. plasmids showed a thermosensitive transfer. Of the 46 strains of Enterobacter spp. isolated, 37(80.4%) were resistant to the drugs tested. A high percentage of resistance was noted for AP(65.2%). All strains resistant to four or more drugs transferred their resistances to Escherichia coli ML 1410, but strains resistant to three or fewer drugs did not transfer the resistances. All of the 15 Proteus strains isolated were resistant to more than two drugs. of them, 6 were quadruple resistance to SM, KM, CP and TC, and 9 were double one to AP and TC. Three (20.0%) of the drug-resistant isolates had R.plasmids conferring AP and TC resistance. GM, OA and NA of the drugs tested were very active to all of 250 Gram-negative enteric bacteria isolated from bovine udder infections.

  • PDF

Physicochemical, Antibacterial Properties, and Compatibility of ZnO-NP/Chitosan/β-Glycerophosphate Composite Hydrogels

  • Huang, Pingping;Su, Wen;Han, Rui;Lin, Hao;Yang, Jing;Xu, Libin;Ma, Lei
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.522-530
    • /
    • 2022
  • In this study we aimed to develop novel ZnO-NP/chitosan/β-glycerophosphate (ZnO-NP/CS/β-GP) antibacterial hydrogels for biomedical applications. According to the mass fraction ratio of ZnO-NPs to chitosan, mixtures of 1, 3, and 5% ZnO-NPs/CS/β-GP were prepared. Using the test-tube inversion method, scanning electron microscopy and Fourier-transform infrared spectroscopy, the influence of ZnO-NPs on gelation time, chemical composition, and cross-sectional microstructures were evaluated. Adding ZnO-NPs significantly improved the hydrogel's antibacterial activity as determined by bacteriostatic zone and colony counting. The hydrogel's bacteriostatic mechanism was investigated using live/dead fluorescent staining and scanning electron microscopy. In addition, crystal violet staining and MTT assay demonstrated that ZnO-NPs/CS/β-GP exhibited good antibacterial activity in inhibiting the formation of biofilms and eradicating existing biofilms. CCK-8 and live/dead cell staining methods revealed that the cell viability of gingival fibroblasts (L929) cocultured with hydrogel in each group was above 90% after 24, 48, and 72 h. These results suggest that ZnO-NPs improve the temperature sensitivity and bacteriostatic performance of chitosan/β-glycerophosphate (CS/β-GP), which could be injected into the periodontal pocket in solution form and quickly transformed into hydrogel adhesion on the gingiva, allowing for a straightforward and convenient procedure. In conclusion, ZnO-NP/CS/β-GP thermosensitive hydrogels could be expected to be utilized as adjuvant drugs for clinical prevention and treatment of peri-implant inflammation.

Changes in the Viability of Lactic Acid Bacteria during Storage of Freeze-Dried Yogurt Snacks (저장기간에 따른 동결건조 농후 발효유 내 유산균 생균수 변화)

  • Lim, Yeseo;Hong, Shik;Shin, Yong Kook;Kang, Shin Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.203-207
    • /
    • 2015
  • The majority of food drying processes are based on the use of thermal energy. However, such methods may deteriorate the quality of the final product. Freeze-drying is one of the most useful processes for drying thermosensitive substances. Food that contains beneficial bacteria, for example, is susceptible to heat treatment, but during freeze-drying beneficial bacteria are preserved in these food items. The primary goals of this study were to develop yogurt snacks and to compare the viability of lactic acid bacteria (LAB) in yogurt snacks under different freeze-drying temperatures. In addition, the survival of LAB during storage was investigated. Survival of LAB in freeze-dried yogurt snacks gradually decreased over 16 weeks of storage. LAB had a residual viability of 25.5% after 16 weeks of storage at room temperature. LAB survived better in freeze-dried plain yogurt snacks than in freeze-dried strawberry yogurt snacks during storage. Freeze-dried yogurt snacks contained 11.9% fat, 57.1% carbohydrate, and 18.7% protein. In conclusion, the viability of LAB in freeze-dried yogurt snacks depends on the temperature during freeze-drying: the higher the freeze-drying temperature, the lower the viability of LAB in yogurt snacks. The viability of LAB in yogurt snacks was also dependent on the moisture content and nutritional value.

  • PDF