Browse > Article

RGD-Conjugated Chitosan-Pluronic Hydrogels as a Cell Supported Scaffold for Articular Cartilage Regeneration  

Park, Kyung-Min (Department of Molecular Science and Technology, Ajou University)
Joung, Yoon-Ki (Department of Molecular Science and Technology, Ajou University)
Park, Ki-Dong (Department of Molecular Science and Technology, Ajou University)
Lee, Sang-Young (Department of Orthopedic Surgery, Seoul National University, College of Medicine)
Lee, Myung-Chul (Department of Orthopedic Surgery, Seoul National University, College of Medicine)
Publication Information
Macromolecular Research / v.16, no.6, 2008 , pp. 517-523 More about this Journal
Abstract
A RGD (Arg-Gly-Asp) conjugated chitosan hydrogel was used as a cell-supporting scaffold for articular cartilage regeneration. Thermosensitive chitosan-Pluronic (CP) has potential biomedical applications on account of its biocompatibility and injectability. A RGD-conjugated CP (RGD-CP) copolymer was prepared by coupling the carboxyl group in the peptide with the residual amine group in the CP copolymer. The chemical structure of RGD-CP was characterized by $^1H$ NMR and FT IR. The concentration of conjugated RGD was quantified by amino acid analysis (AAA) and rheology of the RGD-CP hydrogel was investigated. The amount of bound RGD was $0.135{\mu}g$ per 1 mg of CP copolymer. The viscoelastic parameters of RGD-CP hydrogel showed thermo-sensitivity and suitable mechanical strength at body temperature for cell scaffolds (a> 100 kPa storage modulus). The viability of the bovine chondrocyte and the amount of synthesized glycosaminoglycans (GAGs) on the RGD-CP hydrogels were evaluated together with the alginate hydrogels as a control over a 14 day period. Both results showed that the RGD-CP hydrogel was superior to the alginate hydrogel. These results show that conjugating RGD to CP hydro gels improves cell viability and proliferation, including extra cellular matrix (ECM) expression. Therefore, RGD conjugated CP hydrogels are quite suitable for a chondrocyte culture and have potential applications to the tissue engineering of articular cartilage tissue.
Keywords
chitosan; Pluronic; hydrogel; cartilage regeneration; biomedical applications;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 20  (Related Records In Web of Science)
Times Cited By SCOPUS : 24
연도 인용수 순위
1 J. F. Hansbrough, D. Christine, and W. B. Hansbrough, J. Burn. Care. Rehabil., 13, 519 (1992)   DOI
2 J. S. Park, J. M. Kim, S. J. Lee, S. G. Lee, Y. K. Jeong, S. E. Kim, and S. C. Lee, Macromol. Res., 15, 424 (2007)   과학기술학회마을   DOI
3 H. S. Kim, J. T. Kim, Y. J. Jung, S. C. Ryu, H. J. Son, and Y. G. Kim, Macromol. Res., 15, 65 (2007)   과학기술학회마을   DOI
4 S. H. Lim, Y. Son, C. H. Kim, H. Shin, and J. I. Kim, Macromol. Res., 15, 370 (2007)   과학기술학회마을   DOI
5 B. L. Seal, T. C. Otero, and A. Panitch, Mater. Sci. Eng., R34, 147 (2001)
6 J. Graf, Y. Iwamoto, M. Sasaki, G. R. Martin, R. K. Kleinman, F. A. Robey, and Y. Yamada, Cell, 48, 989 (1987)   DOI   ScienceOn
7 K. J. Jung, K. D. Ahn, D. K. Han, and D. J. Ahn, Macromol. Res., 13, 446 (2005)   과학기술학회마을   DOI
8 B. A. Jason and A. S. Kristi, Biomaterials, 23, 4315 (2002)   DOI   ScienceOn
9 A. Martinez-Ruvalcaba, E. Chornet, and D. Rodrigue, Carbohyd. Polym., 67, 586 (2007)   DOI   ScienceOn
10 Q. Hu, B. Li, M. Wang, and J. Shen, Biomaterials, 25, 779 (2004)   DOI   ScienceOn
11 H. J. Chung, D. H. Go, J. W. Bae, I. K. Jung, J. W. Lee, and K. D. Park, Curr. Appl. Phys., 5, 485 (2005)   DOI   ScienceOn
12 C. Qing, W. Yuqing, B. Jianzhong, and W. Shenguo, Biomaterials, 24, 3555 (2003)   DOI   ScienceOn
13 D. L. Pavia, G. M. Lampman, and G. S. Kriz, Introduction to Spectroscopy, Second edition, Saunders College Publishing, 1979, pp. 81-84
14 R. Jin, C. Hiemstra, Z. Zhong, and J. Feijen, Biomaterials, 28, 2791 (2007)   DOI   ScienceOn
15 X. Jia, J. A. Burdick, J. Kobler, R. J. Clifton, J. J. Rosowski, S. M. Zeitels, and R. Langer, Macromolecules, 37, 3239 (2004)   DOI   ScienceOn
16 H. S. Park, J. S. Temenoff, T. A. Holland, Y. Tabata, and A. G. Mikos, Biomaterials, 26, 7095 (2005)   DOI   ScienceOn
17 H. Ming-Hua, W. Da-Ming, H. Hsyue-Jen, L. Hwa-Chang, H. Tzu-Yang, L. Juin-Yoh, and H. Lein-Tuan, Biomaterials, 26, 3197 (2005)   DOI   ScienceOn
18 E. Bel, B. Ivarsson, and C. Merrill, Proc. Natl. Acad. Sci. USA, 76, 1274 (1979)
19 D. M. Albert, S. Michael, and V. R. Makarand, Biomaterials, 26, 5983 (2005)   DOI   ScienceOn
20 E. Ruoslahti and M. D. Pierschbacher, Science, 238, 491 (1987)   DOI
21 H. B. Lin, W. Sun, D. F. Mosher, C. Garcia-Echeverria, K. Schaufelberger, P. I. Lelkes, and S. L. Cooper, J. Biomed. Mater. Res., 28, 329 (1994)   DOI   ScienceOn
22 S. Jo, P. S. Engel, and A. G. Mikos, Polymer, 41, 7595 (2000)   DOI   ScienceOn
23 M. V. Risbud and R. R. Bhonde, Drug. Deliv., 7, 69 (2000)   DOI   ScienceOn
24 M. D. Pierschbacher and E. Ruoslahti, Nature, 309, 30 (1984)   DOI   ScienceOn
25 D. R. Nisbet, K. E. Crompton, S. D. Hamilton, S. Shirakawa, R. J. Prankerd, D. I. Finkelstein, M. K. Horne, and J. S. Forsythe, Biophys. Chem., 121, 14 (2006)   DOI   ScienceOn
26 K. S. Chow and E. Khor, Biomacromolecules, 1, 61 (2000)   DOI   ScienceOn
27 G. Khang, J. M. Rhee, P. Shin, I. Y. Kim, B. Lee, S. J. Lee, Y. M. Lee, H. B. Lee, and I. Lee, Macromol. Res., 10, 158 (2002)   DOI
28 M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson, New. Engl. J. Med., 331, 889 (1994)   DOI   ScienceOn
29 S. P. Massia and J. A. Hubbell, Anal. Biochem., 187, 292 (1990)   DOI   ScienceOn
30 H. Ulrich, D. Claudia, and K. Horst, Biomaterials, 24, 4385 (2003)   DOI   ScienceOn
31 M. Tatsuya, I. Norimasa, Y. Shintaro, F. Tadanao, M. Tokifumi, M. Akio, O. Noriko, O. Takashi, and N. Shin-Ichiro, Biomaterials, 26, 5339 (2005)   DOI   ScienceOn