• Title/Summary/Keyword: thermoplastic propellant

Search Result 12, Processing Time 0.027 seconds

Application of Thermoplastic Composite Propellants in Production of Propellant Grains and Rocket Motors

  • Jankovski, Boris;Bozic, Vladica;Milos, Marko;Lee, Bok-Jik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.205-209
    • /
    • 2010
  • The technology of production of the thermoplastic composite rocket propellants is based on a two-phase production procedure. The first phase represents the production of a semi-product in the sheet (foil) form (thickness: 0.5 mm ~ 5 mm), whereas the second phase is realized independently from the first one and it is based on the semi-produced product and thus the final form of the propellant grain is realized in relation to the defined geometry. Well done mechanical characteristics of the propellant grain enable that the same thing could be used as a mandrel in the filament winding procedure in creating the motor chamber of the composite material.

  • PDF

Study on the Formulation of an Energetic Thermoplastic Propellant(I) (고에너지 열가소성 추진제 제조 및 특성연구(I))

  • Jeong, Jae-Yun;Song, Jong Kwon;Kim, Yoon-Gon;Lee, Byeong Gil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.71-78
    • /
    • 2019
  • This paper describes the formulation and properties of a recently developed energetic thermoplastic (ETPE) propellant, which is composed of 45% of newly synthesized glycidyl azide polymer, energetic plasticizer (DEGDN) and nitramine oxidizer (RDX). Compared to conventional thermoplastic propellants, the new ETPE propellant showed approximately 7% higher performance and exhibited similar mechanical properties but a lower burn rate and a higher pressure exponent.

Study of the Inhibition on the Combustion of PEBAX/AP Thermoplastic Propellant (PEBAX/AP 열가소성 고체추진제의 연소 억제 방안 연구)

  • Lee, Hyoungjin;Jung, Haeyoung;Cho, Junhyun;Lee, Youngguen;Lee, Hojin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.18-26
    • /
    • 2013
  • This study suggested techniques to reduce burning rate and their effects for the AP thermoplastic composite propellant. Burning rate obtained through ground tests using a small size motor were analyzed to investigate the effects of AP particle size and LiF of 0.5~2.0% on the inhibition reaction for the PEBAX/AP thermoplastic propellant. The results showed that utilization of large size particle of AP and addition of LiF under 2.0% can reduce the burning rate sufficiently and their quantitative effects were suggested in this paper.

Study on the Formulation of an Energetic Thermoplastic Propellant and its Properties(II) (고에너지 열가소성 추진제 제조 및 특성연구(II))

  • Kim, Han-cheol;Park, Eui-Yong;Jeong, Jea-Yun;Kim, Yoon-Gon;Choi, Sung-han;Kang, Tae-won;Oh, Kyeong-won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.41-46
    • /
    • 2020
  • In this study, measurement and analysis results from Differential scanning calorimetry(DSC) and Thermogravimetric analysis(TGA) on the newly developed high-energy thermoplastic elastomer(ETPE) propellant are described, followed by the previous study done under the same title as this paper [1]. The characteristics of high-energy thermoplastic propellant were also verified by conducting thermal analysis, and the LSGT, Shotgun & RQ Bomb test, was carried out as well. High energetic thermoplastic binders containing 45% of GAP(Glycidyl Azide Polymer), energetic plasticizer(DEGDN) and Oxidizer Aonium Perchlorate), RDX(reseach development explosive, cyclotrimethylenetrinitramine) were used to formulate the propellant.

A Study on the Advanced Technology of Solid Rocket Propulsion (고체 추진기관 선진국 기술 동향에 관한 연구)

  • Kim, Hyung-Won;Park, Chong-Seung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.221-224
    • /
    • 2010
  • Recently, due to the enormous cost for sending a satellite into an orbit, small and more reliable satellites have been more demanded. An introduction of new binders(HTPB, GAP) and new oxidizers made great improvements of the large thrust modulation. In order to make cost reduction, one prefers to the low melting temperature thermoplastic propellant reforming the manufacturing process dramatically. Solid propellant rockets have been had a problem of the injection accuracy into orbit, but PBS(Post Boost Stage) using a liquid mono-propellant improves the injection accuracy. This paper also gives the direction of the advanced nozzle materials and the motor case.

  • PDF

Study on Combustion Characteristics of Thermoplastic Solid Propellants Embedded with Metal Wires (금속선이 삽입된 열가소성 추진제의 연소 특성 고찰)

  • Lee, Sunyoung;Oh, Jongyun;Lee, Hyunseob;Khil, Taeock;Kim, Minho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.4
    • /
    • pp.21-27
    • /
    • 2022
  • In this paper, the combustion characteristics of solid propellant embedded with metal wires were analyzed by the ground tests of motors. The propellant grains were made of thermoplastic propellants with Al and Cu as metal wires for the enhancement of burning area and designed with cone shape for better ignition. These metals were used to confirm the enhancement of burning rate on thermal diffusivity properties. The internal ballistics analysis and ground test were performed to investigate the effect of burning rate for each metal wire. We obtained the results of burning rate on a difference of thermal diffusivity of each metal wire with well-made propellant grains.

Overview on Development for Thermoplastic Solid Propellants (열가소성 고체추진제 개발 현황)

  • Cho, Joonhyun;Heo, Jinwook;Kim, Dukhyun;Lee, Hyoungjin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.495-497
    • /
    • 2017
  • Thermoplastic propellants using thermoplastic elastomer binders show moderate performance and mechanical properties compared to thermoset propellants, but these propellants are widely used in a variety of fields due to low cost of raw materials, simple manufacturing process and stable handling process. In order to utilize thermoplastic solid propellants in various fields, we will study properties depending on the content of oxidants, metal fuels and additives.

  • PDF

Design for a Subminiature Solid Rocket Motor (초소형 고체 로켓 모터의 설계)

  • Lee, Sunyoung;Lee, Hyunseob;Yang, Heeseong;Khil, Taeock;Kim, Dongwook;Bang, Jaehoon;Choi, Sungho;Lee, Yongseon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.45-52
    • /
    • 2020
  • In this paper, a subminiature solid rocket motor(SSRM) was designed to develop a miniature smart-bullet and the designed propellant grain was made of thermoplastic propellant for production convenience of inner shape. The internal ballistics analysis and ground test were performed to investigate the performance of SSRM. And a numerical simulation was carried out to obtain basic data on the design of safety distance between the nozzle outlet and a gunner, the temperature distribution of exhaust gas was analyzed by comparing a numerical simulation and the results of IR camera.

Composite Rocket Propellants Based on Thermoplastic Elastomer Binders

  • Bozic, Vladica;Jankovski, Boris;Milos, Marko;Lee, Bok-Jik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.199-204
    • /
    • 2010
  • The objective of this paper is to present new binder systems that can be applied in composite rocket propellants, to improve properties of these propellants not only for better performance, but also to reduce waste and pollution. These novel systems are based on the thermoplastic elastomer (TPE) binders, which consists of copolymers with the addition of a plasticizer, and additives. The effect of the novel TPE binder systems on the burning rate and mechanical properties of AP based propellants was studied. The results show that propellants based on the novel TPE binders have a better energy performance than today's workhorse hydroxyl terminated polybutadine/ammonium perchlorate propellant, exhibit a similar range of burning rate, possess appropriate mechanical properties, and exhibit good processing and aging characteristics at low cost.

  • PDF

Synthesis and Characterization of Energetic Thermoplastic Elastomers based on Carboxylated GAP Copolymers

  • Lim, Minkyung;Jang, Yoorim;Kweon, Jeong-Ohk;Seol, Yang-Ho;Rhee, Hakjune;Noh, Si-Tae
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.284-290
    • /
    • 2020
  • Energetic thermoplastic elastomers (ETPEs) based on glycidyl azide polymer (GAP) and carboxylated GA copolymers [GAP-ETPE and poly(GA-carboxylate)-ETPEs] were synthesized using isophorone diisocyanate (IPDI), dibutyltin dilaurate (DBTDL), 1,4-butanediol (1,4-BD), and soft segment oligomers such as GAP and poly(GA-carboxylate). The synthesized GAP-ETPE and poly(GA-carboxylate)-ETPEs were characterized by Fourier transform infrared (FT-IR), gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), universal testing machine (UTM), calorimetry and sensitivity towards friction and impact. DSC and TGA results showed that the introduction of carboxylate group in GAP helped to have better thermal properties. Glass transition temperatures of poly(GA-carboxylate)-ETPEs decreased from -31 ℃ to -33 ℃ compared to that of GAP-ETPE (-29 ℃). The first thermal decomposition temperature in poly(GA0.8-octanoate0.2)-ETPE (242 ℃) increased in comparison to that of GAP-ETPE (227 ℃). Furthermore, from calorimetry data, poly(GA-carboxylate)-ETPEs exhibited negative formation enthalpies (-6.94 and -7.21 kJ/g) and higher heats of combustion (46713 and 46587 kJ/mol) compared to that of GAP-ETPE (42,262 kJ/mol). Overall, poly(GA-carboxylate)-ETPEs could be good candidates for a polymeric binder in solid propellant due to better energetic, mechanical and thermal properties in comparison to those of GAP-ETPE. Such properties are beneficial to application and processing of ETPE.