Browse > Article
http://dx.doi.org/10.14478/ace.2020.1026

Synthesis and Characterization of Energetic Thermoplastic Elastomers based on Carboxylated GAP Copolymers  

Lim, Minkyung (Department of Bionanotechnology, Hanyang University)
Jang, Yoorim (Department of Bionanotechnology, Hanyang University)
Kweon, Jeong-Ohk (J. Chem Inc.)
Seol, Yang-Ho (J. Chem Inc.)
Rhee, Hakjune (Department of Bionanotechnology, Hanyang University)
Noh, Si-Tae (Department of Materials and Chemical Engineering, Hanyang University)
Publication Information
Applied Chemistry for Engineering / v.31, no.3, 2020 , pp. 284-290 More about this Journal
Abstract
Energetic thermoplastic elastomers (ETPEs) based on glycidyl azide polymer (GAP) and carboxylated GA copolymers [GAP-ETPE and poly(GA-carboxylate)-ETPEs] were synthesized using isophorone diisocyanate (IPDI), dibutyltin dilaurate (DBTDL), 1,4-butanediol (1,4-BD), and soft segment oligomers such as GAP and poly(GA-carboxylate). The synthesized GAP-ETPE and poly(GA-carboxylate)-ETPEs were characterized by Fourier transform infrared (FT-IR), gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), universal testing machine (UTM), calorimetry and sensitivity towards friction and impact. DSC and TGA results showed that the introduction of carboxylate group in GAP helped to have better thermal properties. Glass transition temperatures of poly(GA-carboxylate)-ETPEs decreased from -31 ℃ to -33 ℃ compared to that of GAP-ETPE (-29 ℃). The first thermal decomposition temperature in poly(GA0.8-octanoate0.2)-ETPE (242 ℃) increased in comparison to that of GAP-ETPE (227 ℃). Furthermore, from calorimetry data, poly(GA-carboxylate)-ETPEs exhibited negative formation enthalpies (-6.94 and -7.21 kJ/g) and higher heats of combustion (46713 and 46587 kJ/mol) compared to that of GAP-ETPE (42,262 kJ/mol). Overall, poly(GA-carboxylate)-ETPEs could be good candidates for a polymeric binder in solid propellant due to better energetic, mechanical and thermal properties in comparison to those of GAP-ETPE. Such properties are beneficial to application and processing of ETPE.
Keywords
Solid propellant; Glycidyl azide polymer; GAP copolymer; Carboxylated GAP; Energetic thermoplastic elastomer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. K. Chattopadhyay, B. Sreedhar, V. S, Kothapalli, and N. Raju, Effect of chain extender on phase mixing and coating properties of polyurethane ureas, Ind. Eng. Chem. Res., 44, 1772-1779 (2005).   DOI
2 J. Djonlagic and M. S. Nikolic, Thermoplastic copolyester elastomers, Handbook of Engineering and Specialty Thermoplastics, 3, 377-428 (2011).
3 J. S. Kim, D. K. Kim, J. O. Kweon, J. M. Lee, S. T. Noh, and S. Y. Kim, Effects of annealing temperature on thermal properties of glycidyl azide polyol-based energetic thermoplastic polyurethane, Appl. Chem. Eng., 24, 305-313 (2013).
4 O. C. Elena, A. A. Francisca, M. T. P. Ana, and O. B. Cesar, Characterization of polyurethanes containing different chain extenders, Prog. Rubber Plast. Re., 27, 145-160 (2011).
5 J. S. You, S. C. Kang, S. K. Kweon, H. L. Kim, Y. H. Ahn, and S. T. Noh, Thermal decomposition kinetics of GAP ETPE/RDX-based solid propellant, Thermochim. Acta, 537, 51-56 (2012).   DOI
6 H. Kim, Y. Jang, S. Noh, J. Jeong, D. Kim, B. Kang, T. Kang, H. Choi, and H. Rhee, Ecofriendly synthesis and characterization of carboxylated GAP copolymers, RSC Adv., 8, 20032-20038 (2018).   DOI
7 S. M. Pedreira, J. R. A. Pinto, E. A. Campos, E. D. C. Mattos, M. S. O. Junior, J. I. S. Oliveira, and R. C. L. Dutra, Methodologies for characterization of aerospace polymers/energetic materials- a short review, J. Aerosp. Technol. Manag., 8, 18-25 (2016).   DOI
8 Y. Zhang, J. Zhao, P. Yang, S. He, and H. Huang, Synthesis and characterization of energetic GAP-b-PAEMA block copolymer, Polym. Eng. Sci., 52, 768-773 (2012).   DOI
9 Y. Li, G. Li, J. Li, and Y. Luo, Preparation and properties of semi-interpenetrating networks combined by thermoplastic polyurethane and a thermosetting elastomer, New J. Chem., 42, 3087-3096 (2018).   DOI
10 Y. M. Mohan and K. M. Raju, Synthesis and characterization of HTPB-GAP cross-linked co-polymers, Des. Monomers Polym., 8, 159-175 (2005).   DOI
11 B. Li, Y. Zhao, G. Liu, X. Li, and Y. Luo, Mechanical properties and thermal decomposition of PBAMO/GAP random block ETPE, J. Therm. Anal. Calorim., 126, 717-724 (2016).   DOI
12 E. Diaz, P. Brousseau, G. Ampleman, and R. E. Prud'homme, Polymer nanocomposites from energetic thermoplastic elastomers and $Alex^{(R)}$, Propell. Explos. Pyrot., 28, 210-215 (2003).   DOI
13 S. Pisharath and H. G. Ang, Synthesis and thermal decomposition of GAP-poly(BAMO) copolymer, Polym. Degrad. Stabil., 92, 1365-1377 (2007).   DOI
14 S. Hafner, T. Keicher, and T. M. Klapotke, Copolymers based on GAP and 1,2-epoxyhexane as promising prepolymers for energetic binder systems, Propell. Explos. Pyrot., 43, 126-135 (2018).   DOI
15 E. Diaz, P. Brousseau, G. Ampleman, and R. E. Prud'homme, Heat of combustion and formation of new energetic thermoplastic elastomers based on GAP, polyNIMMO and polyGLYN, Propell. Explos. Pyrot., 28, 101-106 (2003).   DOI
16 S. Filippi, L. Mori, M. Cappello, and G. Polacco, Glycidyl azide-butadiene block copolymers: Synthesis from the homopolymers and a chain extender, Propell. Explos. Pyrot., 42, 826-835 (2017).   DOI
17 Y. Wu, Y. Luo, and Z. Ge, Properties and application of a novel type of glycidyl azide polymer (GAP)-modified nitrocellulose powders, Propell. Explos. Pyrot., 40, 67-73 (2015).   DOI
18 E. Diaz, P. Brousseau, and R. Emery, Heats of combustion and formation of new energetic thermoplastic elastomers based on GAP, polyNIMMO and polyGLYN, Propell. Explos. Pyrot., 28, 101-106 (2003).   DOI
19 F. M. Betzler, V. A, Hartdegen, T. M. Klapotke, and S. M. Sproll, A new energetic binder: Glycidyl nitramine polymer, Cent. Eur. J. Energ. Mater., 13, 289-300 (2016).   DOI
20 A. K. Sikder and S. Reddy, Review on energetic thermoplastic elastomers (ETPEs) for military science, Propell. Explos. Pyrot., 38, 14-28 (2013).   DOI
21 Z. Zhang, N. Luo, J. Deng, Z. Ge, and Y. Luo, A kind of bonding functional energetic thermoplastic elastomers based on glycidyl azide polymer, J. Elastom. Plast., 48, 728-738 (2016).   DOI
22 J. S. You, J. O. Kweon, S. C. Kang, and S. T. Noh, A kinetic study of thermal decomposition of glycidyl azide polymer (GAP)-based energetic thermoplastic polyurethanes, Macromol. Res., 18, 1226-1232 (2010).   DOI
23 A. M. Kawamoto, J. I. S. Oliveira, R. C. L. Dutra, L. C. Rezende, T. Keicher, and H. Krause, Synthesis and characterization of energetic thermoplastic elastomers for propellant formulations, J. Aerosp. Technol. Manag., 1, 35-42 (2009).   DOI
24 P. K. Behera, K. M. Usha, P. K. Guchhait, D. Jehnichen, A. Das, B. Voit, and N. K. Singha, A novel ionomeric polyurethane elastomer based on ionic liquid as crosslinker, RSC Adv., 6, 99404-99413 (2019).
25 C. Zhang, Y. J. Luo, Q. J. Jiao, B. Zhai, and X. Y. Guo, Application of the BAMO-AMMO alternative block energetic thermoplastic elastomer in composite propellant, Propell. Explos. Pyrot., 39, 689-693 (2014).   DOI
26 A. Eceiza, M. D. Martin, K. Caba, G. Kortaberria, N. Gabilondo, M. A. Corcuera, and I. Mondragon, Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: Mechanical and thermal properties, Polym. Eng. Sci., 48, 297-306 (2008).   DOI
27 J. S. You and S. T. Noh, Rheological and thermal properties of glycidyl azide polyol-based energetic thermoplastic polyurethane elastomers, Polym. Int., 62, 158-164 (2013).   DOI