• Title/Summary/Keyword: thermoplastic composites

Search Result 204, Processing Time 0.021 seconds

Investigation of Viscoelastic Properties of EPDM/PP Thermoplastic Vulcanizates for Reducing Innerbelt Weatherstrip Squeak Noise of Electric Vehicles (전기차 인너벨트 웨더스트립용 EPDM/PP Thermoplastic Vulcanizates 재료설계인자에 따른 점탄성과 글라스 마찰 소음 상관관계 연구)

  • Cho, Seunghyun;Yoon, Bumyong;Lee, Sanghyun;Hong, Kyoung Min;Lee, Sang Hyun;Suhr, Jonghwan
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.192-198
    • /
    • 2021
  • Due to enormous market growing of electric vehicles without combustion engine, reducing unwanted BSR (buzz, squeak, and rattle) noise is highly demanded for vehicle quality and performance. Particularly, innerbelt weatherstrips which not only block wind noise, rain, and dust from outside, but also reduce noise and vibration of door glass and vehicle are required to exhibit high damping properties for improved BSR performance of the vehicle. Thermoplastic elastomers (TPEs), which can be recycled and have lighter weight than thermoset elastomers, are receiving much attention for weatherstrip material, but TPEs exhibit low material damping and compression set causing frictional noise and vibration between the door glass and the weatherstrip. In this study, high damping EPDM (ethylene-propylene-diene monomer)/PP (polypropylene) thermoplastic vulcanizates (TPV) were investigated by varying EPDM/PP ratio and ENB (ethylidene norbornene) fraction in EPDM. Viscoelastic properties of TPV materials were characterized by assuming that the material damping is directly related to the viscoelasticity. The optimum material damping factor (tanδ peak 0.611) was achieved with low PP ratio (14 wt%) and high ENB fraction (8.9 wt%), which was increased by 140% compared to the reference (tanδ 0.254). The improved damping is believed due to high fraction of flexible EPDM chains and higher interfacial slippage area of EPDM particles generated by increasing ENB fraction in EPDM. The stick-slip test was conducted to characterize frictional noise and vibration of the TPV weatherstrip. With improved TPV material damping, the acceleration peak of frictional vibration decreased by about 57.9%. This finding can not only improve BSR performance of electric vehicles by designing material damping of weatherstrips but also contribute to various structural applications such as urban air mobility or aircrafts, which require lightweight and high damping properties.

Effect of Fabricating Temperature on the Mechanical Properties of Spread Carbon Fiber Fabric Composites (스프레드 탄소섬유 직물 복합재료의 성형온도에 따른 기계적 특성에 관한 연구)

  • Eun, Jong Hyun;Gwak, Jae Won;Kim, Ki Jung;Kim, Min Seong;Sung, Sun Min;Choi, Bo Kyoung;Kim, Dong Hyun;Lee, Joon Seok
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.161-168
    • /
    • 2020
  • In this paper, we have studied the mechanical properties of thermoplastic carbon fiber fabric composites with spread technology and compression molding temperature were investigated. Carbon fiber reinforcement composites were fabricated using commercial carbon fiber fabrics and spread carbon fiber fabrics. Mechanical properties of the commercial carbon fiber composites (CCFC) and spread carbon fiber composites (SCFC) according to compression molding temperatures were investigated. Thermal properties of the polypropylene film were examined by rheometer, differential scanning calorimetry, thermal gravimetric analysis. Tensile, flexural and Inter-laminar shear test. Commercial carbon fiber reinforcement composites and spread carbon fiber composites were fabricated at 200~240℃ above the melting temperature of the polypropylene film. Impregnation properties according to compression molding temperature of the polypropylene film were investigated by scanning electron microscopy. As a result, as the compression molding temperature was increased, the viscosity of the polypropylene film was decreased. The mechanical properties of the compression molding temperature of 230℃ spread carbon fiber composite was superior.

Next Generation Lightweight Structural Composite Materials for Future Mobility Review: Applicability of Self-Reinforced Composites (미래모빌리티를 위한 차세대 경량구조복합재료 검토: 자기강화복합재료의 적용 가능성)

  • Mi Na Kim;Ji-un Jang;Hyeseong Lee;Myung Jun Oh;Seong Yun Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.1-15
    • /
    • 2023
  • Demand for energy consumption reduction is increasing according to the development expectations of future mobility. Lightweight structural materials are known as a method to reduce greenhouse gas emissions and improve energy efficiency. In particular, fiber reinforced polymer composite (FRP) is attracting attention as a material that can replace existing metal alloys due to its excellent mechanical properties and light weight. In this paper, industrial applications and research trends of carbon fiber reinforced composites (CFRP, carbon FRP) and self-reinforced composites (SRC) were reviewed based on the reinforcement, polymer matrix, and manufacturing process. In order to overcome the expensive process cost and long manufacturing time of the epoxy resin-based autoclave method, which is mainly used in the aircraft field, mass production of CFRP-applied electric vehicles has been reported using a high-pressure resin transfer molding process including fast-curing epoxy. In addition, thermoplastic resin-based CFRP and interface enhancement methods to solve the recycling issue of carbon fiber composites were reviewed in terms of materials and processes. To form a perfect matrix-reinforcement interface, which is known as the major factor inducing the excellent mechanical properties of FRP, studies on SRC impregnated with the same matrix in polymer fibers have been reported. The physical and mechanical properties of SRC based on various thermoplastic polymers were reviewed in terms of polymer orientation and composite structure. In addition, a copolymer matrix strategy for extending the processing window of highly drawn polypropylene fiber-based SRC was discussed. The application of CFRP and SRC as lightweight structural materials can provide potential options for improving the energy efficiency of future mobility.

Effect of Compatibilizers on the Mechanical Properties of Waste Polypropylene/Waste Ground Rubber Tire Composites (상용화제의 첨가에 따른 재생 폴리프로필렌/폐타이어 분말 복합체의 기계적 특성 분석)

  • Park, Ki-Hun;Kim, Dong-Hak;Jung, Jong-Ki;Kim, Seong-Gil;Bang, Daesuk;Oh, Myung-Hoon;Kim, Bong-Suk
    • Resources Recycling
    • /
    • v.23 no.1
    • /
    • pp.70-79
    • /
    • 2014
  • In this study, waste polypropylene and waste ground rubber tire(WGRT) composites were prepared by using a modular intermeshing co-rotating twin screw extruder. The effect of three main factors such as WGRT contents, particle size, compatibilizers on the properties of waste PP/WGRT composites was extensively investigated. Tensile strength of the composites was decreased with an increase in WGRT contents, whereas elongation at break and impact strength were increased. The tensile strength, elongation at break and impact strength of the composites with the smaller size of the WGRT were more enhanced. Addition of PP-g-MA into waste PP/WGRT composites exhibited better tensile strength. However, elongation at break and impact strength were slightly decreased with increasing of PP-g-MA. On the other hand, tensile strength, impact strength and elongation at break of the composites were increased by adding the EPDM-g-MA and SEBS-g-MA. Especially, elongation at break was significantly increased compared to the composite with PP-g-MA.

A Study on Increased Properties of Cellulose-Based Biodegradable Polymer Composites (셀룰로오스 기반 생분해성 고분자 복합재의 물성 증가에 관한 연구)

  • Sangjun Hong;Ajeong Lee;Sanghyeon Ju;Youngeun Shin;Teahoon Park
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.126-131
    • /
    • 2023
  • Growing environmental concerns regarding pollution caused by conventional plastics have increased interest in biodegradable polymers as alternative materials. The purpose of this study is to develop a 100% biodegradable nanocomposite material by introducing organic nucleating agents into the biodegradable and thermoplastic resin, poly(lactic acid), to improve its properties. Accordingly, cellulose nanofibers, an eco-friendly material, were adopted as a substitute for inorganic nucleating agents. To achieve a uniform dispersion of cellulose nanofibers (CNFs) within PLA, the aqueous solution of nanofibers was lyophilized to maintain their fibrous shape. Then, they were subjected to primary mixing using a twin-screw extruder. Test specimens with double mixing were then produced by injection molding. Differential scanning calorimetry was employed to confirm the reinforced physical properties, and it was found that the addition of 1 wt% CNFs acted as a reinforcing material and nucleating agent, reducing the cold crystallization temperature by approximately 14℃ and increasing the degree of crystallization. This study provides an environmentally friendly alternative for developing plastic materials with enhanced properties, which can contribute to a sustainable future without consuming inorganic nucleating agents. It serves as a basis for developing 100% biodegradable green nanocomposites.

Braided composite rods: Innovative fibrous materials for geotechnical applications

  • Fangueiro, Raul;Rana, Sohel;Gomes Correia, A.
    • Geomechanics and Engineering
    • /
    • v.5 no.2
    • /
    • pp.87-97
    • /
    • 2013
  • In this paper, a novel fibrous material known as axially reinforced braided composite rods (BCRs) have been developed for reinforcement of soils. These innovative materials consist of an axial reinforcement system, comprised of longitudinally oriented core fibres, which is responsible for mechanical performance and, a braided cover, which gives a ribbed surface texture for better interfacial interactions with soils. BCRs were produced using both thermosetting (unsaturated polyester) and thermoplastic (polypropylene) matrices and synthetic (carbon, glass, HT polyethylene), as well as natural (sisal) core fibres. BCRs were characterized for tensile properties and the influence of core fibres was studied. Moreover, BCRs containing carbon fibre in the core composition were characterized for piezoresistivity and strain sensing properties under flexural deformation. According to the experimental results, the developed braided composites showed tailorable and wide range of mechanical properties, depending on the core fibres and exhibited very good strain sensing behavior.

Thermoforming Technology of Textile Composite Tubes

  • OZAKI Jun-ichi;MANABE Ken-ichi
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.04a
    • /
    • pp.63-66
    • /
    • 2003
  • Thermoforming of fiber reinforced thermoplastic (FRTP) braided tubes was studied as a new forming technique. FRTP braided tubes with four plies are fabricated by the pressure bonding method are used in thermoforming. Bulge forming, bending process, pipe fittings and FE analysis are carried out in this study. In bulge forming the composite tube can be expanded up to about two times initial diameter. The suggested bending process can be obtained bent products with various bending radii. In pipe fitting it is possible to fabricate T-shape fitting, cross fitting and two-branch fitting. These results exhibit developed forming processes become useful processes for textile composite tubes.

  • PDF

Modeling the Relaxation Behavior of a Polymeric Composite (열가소성 복합재료의 응력완화 모델링)

  • 김위대
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.76-79
    • /
    • 2000
  • Polymeric composites exhibit highly nonlinear and rate dependent behavior during loading and unloading in off-axis directions. The equilibrium state of stress during loading is lower than the state of stress produced at finite strain rates. The amount of stress relaxation during loading decreases. Interestingly, however, the stress goes up to reach to the equilibrium state of stress for a fixed displacement during unloading. The unloading behavior is quite similar to the loading behavior. The stress relaxation patterns during loading and unloading is also similar, and those depend on the fiber orientation angles and the loading and unloading rates. The AS4/PEEK thermoplastic composite is used to characterize the relaxation behavior for different off-axis angles and loading rates. There exists a transient loading region at the beginning of unloading. The effective stress and effective plastic strain concept is used to establish a master curve of stress recovery pattern for different off-axis angles and unloading rates.

  • PDF

Protein-based bio-plastics: formulation, processing, properties and applications

  • Guilbert Stephane;Gontard Nathalie;Morel Marie Helene
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.357-357
    • /
    • 2006
  • Many industrial sources of proteins can be used as raw materials to produce films, molded materials, and various hollow items either by "casting" techniques or by "thermoplastic processing". Combining proteins with natural fibbers, paper or biodegradable polyesters is very promising to form biodegradable composites witch take advantage of the barrier and mechanical properties of each component. Using nano-fillers to form nanocomposites has also been shown to be interesting to improve properties. Production, with low transformation cost, of protein based materials to form biodegradable materials with controlled functional properties for food uses, medical uses, packaging, agriculture, controlled release systems, etc. is discussed.

  • PDF

A study on characteristic adgesive condition at microscopic interfaces and notch shape strength of GFRP composites laminates under low-hot-wet environment (저온.고온고습 환경시험에 의한 GFRP의 미시계면 접착상태 및 노치형상강도 특성에 관한 연구)

  • 김옥만;박귀성;한길영;이동기;김이곤
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.58-66
    • /
    • 1996
  • The purpose of this investigation is to estimate the strength with the variations of the notch shape and the adgesive condition at the fiber/matrix micro interface of E-glass/PP laminates. To promote the degradation of the adhesive condition at the fiber/matrix micro interface without matrix dissolution loss, low-, hot-wet and spiking tests were carried out. The absorpotion properties and the tensile properties were compared accrding to the fiber orientation and the content. The results show that, firstly, saturated moisture absorption was reached at 5cycles and their absorptions of RD-40, UD-42 and UD-50 are 0.68%, 0.63%, 0.60%, respectively. Secondly, all the specimens investigated were mostly degraded at 5cycle, whereas UD-50 having ellipse shaped notch the least decrement of strength.

  • PDF