• Title/Summary/Keyword: thermophysiological property

Search Result 4, Processing Time 0.016 seconds

Evaluation of Thermal Comfortable Feeling by EEG Analysis

  • Kamijo, Masayoshi;Horiba, Yosuke;Hosoya, Satoshi;Takatera, Masayuki;Sadoyama, Tsugutake;Shimizu, YosiHo
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.230-234
    • /
    • 2000
  • Thermal comfort by wearing clothes is the important element which gives influence to a clothing comfort. The thermal comfort of clothes have been evaluated by sensory test and physical property of clothes material. To evaluate a thermophysiological comfort. a new evaluation method which measures the physiological response such as electroencephalogram(EEG) is attracting the attention of many people. In the chilly environment, the EEGs in t재 kinds of thermal conditions : with and without clothes were measured. By utilizing the chaos analysis, the behavior of the obtained EEGs were quantiatively expressed in the correlation dimension. As a result, the correlation dimension of the EEGs in being thermal comfortable feeling by putting on clothes, was bigger than the correlation dimension of the EEGs in being cold and discomfort. These results suggest that chaotic analysis of EEG is effective to the quantitative evaluation of thermal esthesis.

  • PDF

Thermophysiological Responses and Subjective Sensations when Wearing Clothing with Quickly Water-Absorbent and Dry Properties Under Exercise-Induced Heat Strain (운동에 의한 열 스트레스하에서 흡한속건성 소재 운동복 착용시의 온열생리적 반응 및 주관적 감각)

  • Lee, So-Jin;Park, Shin-Jung
    • Fashion & Textile Research Journal
    • /
    • v.8 no.3
    • /
    • pp.349-356
    • /
    • 2006
  • The purpose of this study was to compare the thermophysiological responses and subjective sensations of clothing materials with different water transfer property investigated in exercising and resting subjects at an ambient temperature of $20^{\circ}C$ and a relative humidity of 40%. Two kinds of clothing ensemble were tested: 100% cotton with highly water-absorbent but slowly dry properties(C) and 100% polyester with quickly water-absorbent and dry properties by four capillary channels(QADP). Seven apparently healthy male participants each undertook two series of experiments comprised 10-min of rest, 20-min of exercise with 70% of $VO_{2max}$ on a treadmill and 20-min of recovery. Mean skin temperature was significantly lower in QADP than in C during exercise and recovery. Clothing microclimate temperature was significantly lower in QADP during exercise and clothing surface temperature was also lower in QADP especially during recovery. Also, clothing surface humidity was significantly higher in QADP after the later half of exercise. The concentration of blood lactic acid tended to decrease to a lower level at recovery 3 minutes when wearing QADP rather than C clothing ensemble. Metabolic energy was marginally significantly less during the second half of exercise in QADP. Body mass loss tended to be greater in C than in QADP. The participants had better scores in thermal sensation, comfortable sensation and wetness in QADP during exercise and recovery. These results show that functional materials with quickly water-absorbent and dry properties can alleviate heat strain and induce more comfortable clothing microclimates and subjective sensations in the exercise-induced hyperthermia.

Effects of Thermophysiological Responses by Trainning Wear Made from Cotton and Hygroscopically Treated Polyester (면과 친수 가공 폴리에스테르 소재로 된 트레이닝복의 인체 생리 효과)

  • Chung Hee-Ja;Chang Jee-Hae
    • Journal of the Korean Home Economics Association
    • /
    • v.37 no.12 s.142
    • /
    • pp.193-203
    • /
    • 1999
  • This study was executed to show influence of material and property of sportswear to physiological responses of body and comfort sensation and to supply basic research data about comfortable sportswear Trainning wear was manufactured with cotton(C) and hygroscopically treated polyester material (FP), and its properties of material were measured. Then rectal temperature, skin temperature, heart rate, weight loss, clothing microclimate and subjective sensation was estimated with study of wearing with these sportswear and examined the influence that it got to physiological responses of body and sensation. Health adult men were selected for subjects and executed at climatic chamber of temperature, $20\pm2^{\circ}C and humidity, $60\pm5%$ R.H. Conclusively sportswear of hygroscopically treated polyester is a favorable functional material. So far factor that affect to physiological comfort sensation has been explained mostly by moisture regain but in our experiment, it turned out that air permeability, water absorption velocity and dynamic oater absorption etc. were affecting factors. So according to this result, air permeability and moisture permeability should be considered with transmittance of temperature moisture for development of comfort material.

  • PDF