• Title/Summary/Keyword: thermophilic anaerobic digestion

Search Result 52, Processing Time 0.025 seconds

Comparison of Single-stage Thermophilic and Mesophilic Anaerobic Sewage Sludge Digestion (단상 고온 및 중온 혐기성 하수 슬러지의 소화 공정 비교)

  • Jang, Hyun Min;Choi, Suk Soon;Ha, Jeong Hyub
    • Applied Chemistry for Engineering
    • /
    • v.27 no.5
    • /
    • pp.532-536
    • /
    • 2016
  • In this study, single-stage continuous anaerobic reactors to treat sewage sludge were operated under different temperature (55 and $35^{\circ}C$; $R_{TAD}$ and $R_{MAD}$) to evaluate the reactor stability and performance of the thermophilic and mesophilic anaerobic digestion. During the overall digestion, both anaerobic reactors maintained quite stable and constant pH and total alkalinity (TA) values in the range of 6.5-8.0 and 3-4 g $CaCO_3/L$, respectively. After the start-up period, $R_{TAD}$ showed 10% higher VS removal efficiency than that of $R_{MAD}$ ($R_{TAD}$; 43.3%; $R_{MAD}$ : 33.6%). Although organic acids such as acetic and propionic acid were detected in both anaerobic reactors at the start-up period, all organic acids in $R_{TAD}$ and $R_{MAD}$ were consumed at the steady state condition. Also $R_{TAD}$ showed 31.4 % higher methane production rate (MPR) than that of $R_{MAD}$ at the steady state condition ($R_{TAD}$; 243 mL $CH_4/L/d$; $R_{MAD}$ : 185 mL $CH_4/L/d$). Meanwhile, the experimental results indicated similar methane yield between $R_{TAD}$ and $R_{MAD}$.

Mixing Effects of Anaerobic Digestion Efficiency on Livestock Wastewater Treatment (교반이 축산폐수의 혐기성 처리효율에 미치는 영향)

  • Lee, Jong-Ho;Sung, Il-Wha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.585-592
    • /
    • 2014
  • Mixing effect on anaerobic digestion of livestock wastewater was different results depending on the researchers have been reported. The purpose of this study was to understand application of Korea livestock waste it was necessary to determine the effect of mixing. 4 anaerobic reactors were operated mesophilic and thermophilic temperature with continuous mixing or non mixing condition, respectively. Experimental result showed If temperature was same, TCOD removal efficiency of continuous mixing reactor was 0.11-0.58% higher than non mixing reactor. Different mesophilic and thermophilic temperature, there was no significant difference of TCOD removal efficiency. Continuously mixed digester gas production was 1.7-4.6% higher than non mixed digester. In addition, mesophilic digester gas production was 29.1-32.1% higher than the thermophilic digester. It was due to the thermophilic digester believe the inhibition of ammonia. This study suggest that the optimized operation condition of anaerobic digestion for livestock wastewater treatment was mesophilic continuous mixing state.

Effects of Mixing Ratio and Organic Loading Rate of Acid Fermented Food Wastes and Sewage Sludge on the Anaerobic Digestion Process (음식물찌꺼기 산발효산물과 하수슬러지의 혼합비 및 유기물부하가 병합처리에 미치는 영향)

  • Ahn, Chul-Woo;Park, Jin-Sik;Jang, Seong-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.247-256
    • /
    • 2006
  • This study has been conducted for the process of food wastes disposal using surplus capacity of established sewage treatment plant by co-digestion of fermented food wastes and sewage sludge after thermophilic acid fermentation of food wastes. The co-digestion of thermophilic acid fermented food wastes and sewage sludge was performed by semi-continous method in mesophilic anaerobic digestion reactor. It showed great digestion efficiency as the average SCOD and VS removal efficiency in organic loading rate 3.30g VS/L.d. were 74.2% and 73.6%, and the gas production rate and average methane content were 0.440 L/g $VS_{add}.d$ and 66.5%, respectively. Based on the results of this study, the co-digestion of thermophilic acid fermented food wastes and sewage sludge in sewage treatment plant is able to improve treatment efficiency of anaerobic digestion reactor and to dispose food wastes simultaneously, and was proved excellent economical efficiency comparing with any other treatment methods.

A Study on the Recovery of Carbon Energy by Thermophilic Aerobic Digestion (고온호기성 소화공정을 이용한 탄소원 회수에 관한 연구)

  • Yi, Yunseok;Kim, Ryunho;Yun, Zuwhan
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.906-912
    • /
    • 2007
  • A lab-scale thermophilic aerobic digestion (TAD) system was operated at $64^{\circ}C$ with mixed primary and secondary sludges taken from a large wastewater treatment plant. The semi-continuously operated reactor at HRTs of 1, 3 and 6 days indicated that longer HRT could stabilize sludge organics and solids comparable to anaerobic digestion. It has been found that reduced HRT of 3 and 1 day produced the effluent with highly biodegradable soluble organics, indicating the possibility of energy recovery in TAD. No proof of biological nitrification was observed at thermophilic operating temperature of $64^{\circ}C$, while nitrogen removal seemed due to nitrogen exertion during the aerobic thermophilic cell synthesis as well as ammonia stripping.

Biogas Resource from Foodwaste Leachate Using UASB(Upflow Anaerobic Sludge Blanket) (UASB를 이용한 음폐수의 Biogas 자원화)

  • Min, Boo-Ki;Lee, Chang-Hyun;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.28-34
    • /
    • 2012
  • In this study, we operated a UASB (upflow anaerobic sludge blanket) reactor by using foodwaste leachate as a raw material with the method of Mesophilic Digestion ($35{\pm}0.5^{\circ}C$) and Thermophilic Digestion ($55{\pm}0.5^{\circ}C$). During 20 days of operating time with the Mesophilic Digestion, the recirculation ratio of effluent was stepwisely changed in every five days. Thermophilic Digestion was carried out at the same condition for Mesophilic Digestion. Results showed that the organic removal efficiency of Mesophilic Digestion was over 90% and the yield of methane production was from 66 up to 70%. The organic removal efficiency of Thermophilic Digestion was over 80% and the yield of methane production was between 62 to 68%. Also, when UASB reactor was operating to over the 3Q effluent recirculation, the experiment could be carried out economically and stably.

Thermophilic Sewage Sludge Digestion by Anaerobic Sequencing Batch Reactor (고온 협기성 연속회분식 공정에 의한 도시하수슬러지 소화)

  • 허준무;박종안;이종화;손부순;장봉기
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.130-138
    • /
    • 1999
  • The feasibility of municipal sewage sludge digestion was investigated by using thermophilic anaerobic sequencing batch reactor(ASBR). One-day settle time was enough for the high performance of solid-liquid separation. The conversion of semi-continuous mode to sequencing batch mode is easily achieved without any adverse effects, although the large amount of sludge equal to the volume ratio of 0.3~06 to reactor volume was added in the feed step of the start-up. The ASBRs had higher conversion capability of organics to biogas than the control reactor. Gas yields of the ASBRs were increased by the average of 50% over the control reactor across a range of hydraulic retention time(HRT)s from 10days to 5days. The thermophilic reactors showed higher gas production than mesophilic reactor. Removal efficiencies of organic matter exceeded 80% on the basis of supernatants, except that at the reactor. Solid-liquid separation was essential in the performance of the ASBR, especially, at the lower HFT. The ASBRs were highly efficient in the retention of activated biomass within the reactor. thus compensating for increased equivalent organic loading rate through increased solids retention times followed by the increased solids, while maintaining shorter HRTs.

  • PDF

Treatment of Organic Wastes and Reuse of Bio-energy from the Anaerobic Digestion - Thermophilic Oxic Precess (혐기성 소화-고온 호기법에 의한 유기성폐기물의 처리와 생성열의 재활용 검토)

  • Yang, Jae-Kyung;Choi, Kyung-Min
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.1
    • /
    • pp.79-89
    • /
    • 2001
  • Anaerobic Digestion - Thermophilic Oxic Process(ADTOP) has been known to be one way reducing and composting of organic wastes without draining or forming excess sludge. It could be completely performed by the evaporation of water using the bio-energy from the microbial degradation of organic. In the present study the complete treatment of Chinese restaurant wastes was conducted and utility of bio-energy produced from the ADTOP was estimated. Base on results, it could be concluded as follows; 1) chinese restaurant wastes could be completely treated using the TOP without draining or excess sludge. Maximum volumetric loading rate was determined as $55.0kg-garbage/m^3$. Input water was almostly evaporated and 90.5% of carboneous organic wastes was conversed to carbondioxide. 2)The optimum volumetric loading rate which is acceptable to maintain over $55^{\circ}C$ in the anaerobic digester was determined as $45kg-garbage/m^3{\cdot}d$. 3) The optimum HRT was at least over 10 days in order to maintain about $50^{\circ}C$ in the anaerobic digester using bio-energy produced from TOP. Therefore the utilization of bio-energy produced from TOP could be used in the process which had long HRT such as the anaerobic digestion. 4) The efficiency of anaerobic digester rate were over 90% by the ADTOP under the organic loading rate of $1.1kg-COD/m^3{\cdot}d$, 50kg-Chinese restaurant garbage and $250{\ell}/m^3{\cdot}min$ of the aeration rate.

  • PDF

Effect of Increasing Amounts of Ammonium Nitrogen Induced by Consecutive Mixture of Poultry Manure and Cattle Slurry on the Microbial Community during Thermophilic Anaerobic Digestion

  • Alsouleman, Khulud
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1993-2005
    • /
    • 2019
  • Thermophilic anaerobic digestion (TAD) is characterized by higher biogas production rates as a result of assumedly faster microbial metabolic conversion rates compared to mesophilic AD. It was hypothesized that the thermophilic microbiome with its lower diversity than the mesophilic one is more susceptible to disturbances introduced by alterations in the operating factors, as an example, the supply of nitrogen-rich feedstock such as poultry manure (PM). Laboratory scaled TAD experiments using cattle slurry and increasing amounts of PM were carried out to investigate the (in-) stability of the process performance caused by the accumulation of ammonium and ammonia with special emphasis on the microbial community structure and its dynamic variation. The results revealed that the moderate PM addition, i.e., 25% (vol/vol based on volatile substances) PM, resulted in a reorganization of the microbial community structure which was still working sufficiently. With 50% PM application, the microbial community was further stepwise re-organized and was able to compensate for the high cytotoxic ammonia contents only for a short time resulting in consequent process disturbance and final process failure. This study demonstrated the ability of the acclimated thermophilic microbial community to tolerate a certain amount of nitrogen-rich substrate.

Effect of biogas production to different anaerobic digestion systems and feeding stocks (혐기소화 공정 및 원료 유형별 바이오가스 생산에 미치는 영향)

  • Shin, JoungDu;Hong, Seung-Gil;Park, Woo-Kyun;Park, SangWon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.4
    • /
    • pp.66-73
    • /
    • 2011
  • Objective of this study was to investigate the effect of biogas production to different systems and feeding stocks. For the biogas production through operating the temperature phase anaerobic digestion(TPAD) with different feeding stocks, the stage state of biogas production with 70% of methane concentration in the thermophilic digestion tank with co-digestion of food waste and swine manure(40 : 60) was delayed at 3.5 times, but its mesophilic tank was short for 5 days as relative to the swine manure. The cumulative methane production in the thermophilic digestion tank with co-digestion of food waste and swine manure was started with greater than its swine manure at 60 days after digestion periods. However, its mesophilic tank with swine manure was great at 3 days after digestion periods. For aspect of anaerobic digestion processes with swine manure, it was appeared that the stage state of biogas production rate in TPAD was shorter than the two phase anaerobic digestion system.

Simultaneous Treatment of Sewage Sludge and Food Wastewater Using Combined Digestion Process (혼합 소화공정을 통한 하수 슬러지와 음폐수 병합 처리)

  • Ha, Jeong Hyub;Park, Jong Moon
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.581-586
    • /
    • 2017
  • In this study, in order to find the feasibility of thermophilic biological pre-treatment for the co-digestion of food wastewater and sewage sludge, digestion efficiency of the combined thermophilic aerobic and mesophilic anaerobic process and its effect on methane production were investigated. Also, a lab-scale co-digestion process was operated to observe parameter changes according to the increase of organic loading rates using different dilution ratios of distilled water and food wastewater (1/3 [Run I], 2/3 [Run II] in addition to using the raw food wastewater [Run III]). The results indicated that co-digestion process maintained quite stable and constant pH during entire experiments. With regard to VS removal, the higher removal was observed in the combined process and the removal efficiency was 52.24% (Run I), 66.59% (Run II) and 72.53 (Run III), respectively. In addition, the combined process showed about an 1.6-fold improved methane production rate and significantly higher methane yield than that of using single anaerobic digestion process.