• Title/Summary/Keyword: thermophilic aerobic digestion

Search Result 26, Processing Time 0.023 seconds

Ultrasonic Pretreatment for Thermophilic Aerobic Digestion in Industrial Waste Activated Sludge Treatment

  • Kim, Young-Kee;Kwak, Myung-Shin;Lee, Won-Hong;Park, Jeong-Woo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.6
    • /
    • pp.469-474
    • /
    • 2000
  • In order to enhance the degradation efficiency of waste activated sludge (WAS) by thermophilic aerobic digestion, an ultrasonic pretreatment was examined. It was observed that ultrasonic pretreatment increased the solubilization of organic matter in the WAS and that the solubilization ratio of the organics increased during the first 30 min but did not extensively increase thereafter. Therefore, a pretreatment time of 30 min was determined to be the economical pretreatment time from the experimental results. From the digestion experiments, which was conducted using the WAS collected from an oil refinery plant in Inchon, Korea, investigating the effects of an ultrasonic pretreatment on thermophilic aerobic digestion, it was confirmed that the proposed ultrasonic pretreatment was effective at enhancing the release of the cellular components in WAS and the degradation of released components in the thermophilic aerobic digestion.

  • PDF

A Study on the Recovery of Carbon Energy by Thermophilic Aerobic Digestion (고온호기성 소화공정을 이용한 탄소원 회수에 관한 연구)

  • Yi, Yunseok;Kim, Ryunho;Yun, Zuwhan
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.906-912
    • /
    • 2007
  • A lab-scale thermophilic aerobic digestion (TAD) system was operated at $64^{\circ}C$ with mixed primary and secondary sludges taken from a large wastewater treatment plant. The semi-continuously operated reactor at HRTs of 1, 3 and 6 days indicated that longer HRT could stabilize sludge organics and solids comparable to anaerobic digestion. It has been found that reduced HRT of 3 and 1 day produced the effluent with highly biodegradable soluble organics, indicating the possibility of energy recovery in TAD. No proof of biological nitrification was observed at thermophilic operating temperature of $64^{\circ}C$, while nitrogen removal seemed due to nitrogen exertion during the aerobic thermophilic cell synthesis as well as ammonia stripping.

Aeration Control of Thermophilic Aerobic Digestion Using Fluorescence Monitoring

  • Kim, Young-Kee;Oh, Byung-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.93-98
    • /
    • 2009
  • The thermophilic aerobic digestion (TAD) process is recognized as an effective method for rapid waste activated sludge (WAS) degradation and the deactivation of pathogenic microorganisms. Yet, high energy costs due to heating and aeration have limited the commercialization of economical TAD processes. Previous research on autothermal thermophilic aerobic digestion (ATAD) has already reduced the heating cost. However, only a few studies have focused on reducing the aeration cost. Therefore, this study applied a two-step aeration control strategy to a fill-and-draw mode semicontinuous TAD process. The NADH-dependent fluorescence was monitored throughout the TAD experiment, and the aeration rate shifted according to the fluorescence intensity. As a result, the simple two-step aeration control operation achieved a 20.3% reduction in the total aeration, while maintaining an effective and stable operation. It is also expected that more savings can be achieved with a further reduction of the lower aeration rate or multisegmentation of the aeration rate.

Application of a Thermophilic Aerobic Digestion Process to Industrial Waste Activated Sludge Treatment

  • Kim, Young-Kee;Eom, Yong-Suk;Oh, Byung-Keun;Lee, Won-Hong;Choi, Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.570-576
    • /
    • 2001
  • Thermophilic aerobic bacteria were applied in the degradation of industrial waste activated sludge (WAS) on a laboratory scale expreiment. The performance of digestion was estimated by measuring the reduction of total suspended solids (TSS), dissolved organic carbon (DOC), and total organic carbon (TOC). Among three strains of Bacillus stearothermophilus and three strains of Thermus species, B. stearothemophilus ATCC 31197 showed the best overall efficiency level for the degradation of industrial WAS, which was collected from a wastewater treatment plant in an oil refinery factory. Industrial WAS coul be successfully detraded in a batch digestion with ATCC 31197. The stability of the digestion process with ATCC 31197 was successfully verified by semi-continuous (fill-and-draw) digestion experiment. From the results of this study, it was shown that the thermophilic aerobic digestion process with ATCC 31197 could efficiently be applied to the degradation of industrial WAS.

  • PDF

Microbiological Evaluation of Antibiotic Resistance and Pathgoenicity in Autothermal Thermophilic Aerobic Digestion Treated Swine Manure

  • Han Il;Congeevaram Shankar;Gi Dong-Won;Park Jun-Hong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.119-122
    • /
    • 2006
  • In both untreated and conventionally stabilized swine manures antibiotic resistant (AR) microorganisms, Staphylococcus-like and Salmonella-like microorganisms were detected. Also pathogens with MAR phynotype were detected. Presence of such microorganisms suggest high level of pathogen-related health risk to farmers who may be in direct contact with the manure and its conventionally stabilized product In contrast the autothermal thermophilic aerobic digestion (ATAD) treatment have efficiently reduced AR and pathogenicity from the swine manure. When soil was fertilized using swine manure and its stabilized products, despite no detection of MAR-exhibiting pathogen-like microorganisms in fertilized soil, potential pathogen-related health risk could not be ruled out from the fertilized soil since the organic fertilization led to increase in AR and pathogenicity in the soil microbial communities. As conclusion, this microbiological study demonstrated that an ATAD process is applicable in control of pathogen-related health risk in livestock manure.

  • PDF

Optimum Operation of Thermophilic Aerobic Digestion Process for Waste Activated Sludge Minimization

  • Kim, Young-Kee;Choi, Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.683-686
    • /
    • 2002
  • To achieve optimum operation of a thermophilic aerobic digestion (TAD) process for waste activated sludge (WAS), TAD experiments using Bacillus stearothermophilus (ATCC 31197) were carried out to investigate the optimum concentration of dissolved oxygen (DO). TAD reactors were operated at DO concentrations of 0, 1, 2, 3, 4, and 5 ppm, and the results showed that the WAS could be successfully degraded by a TAD system operated with a DO concentration of 1 ppm and above. When the TAD system with an optimum additive (2 mM Ca ion), selected from a previous study, and 1 ppm DO concentration were combined with a thermal pretreatment ($121^{\circ}C$, 10 min), the results exhibited upgraded total suspended solids and an enhanced protein degradation.

The syudy of reaction kinetics in the thermophilic aerobic digestion process of piggery wastewater (축산폐수의 고온호기성 소화공정에서의 반응동력학 연구)

  • Kim, Yong-Kwan;Kim, Seok-Won;Kim, Baek-Jae
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.97-102
    • /
    • 2007
  • The piggery wastewater is the major source of the water pollution problem in the rural area. The treatment alternatives for piggery wastewater are limited by the characteristics of both high organic and nitrogen(N) content. In order to investigate an efficient N removal system, the thermophilic aerobic digestion process was examined. The experiment was investigated organic and nitrogen removal efficiency at various HRTs and air supply volume. The results of semi-continuous experiment indicated that a higher removal of the soluble portion of COD was achieved with the longer HRTs. However, the inert portion of COD in piggery wastewater was not much changed by thermophilic aerobic digestion. In addition, with the higher HRT of 3 days, up to 79% of NH4-N removal efficiency was achieved. Lower the HRTs, a decrease of NH4-N removal was founds. The gas samples from the lab reactor were analyzed along with the N content in influent and effluent. The N2O formation in our system indicates a novel aerobic deammonification process occurred during the thermophilic aerobic digestion. Both N02 and N03 were not presented in the effluent of thermophilic aerobic digester. With the HRT of 3 days, 36.4% of influent N(or 57.5% removal N) was aerobically converted to N2O gas. The ammonium conversion to N2O gas significantly decrease to 4.5% at low HRT of .05 day..

  • PDF

Performance Evaluation of Biofilter Treating Autothermal Thermophilic Aerobic Digestion Offgas (고온호기성 소화공정 배가스 처리를 위한 바이오필터 성능평가)

  • Bae, Byung-Uk;Choi, Ki-Seung
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.732-739
    • /
    • 2010
  • Two combined autothermal thermophilic aerobic digestion (ATAD) and biofilter (BF) systems were operated to treat the piggery wastewater and the ammonia offgas. Experimental results indicated that the organic removal efficiency of ATAD-2, operated with oxygen, was higher than that of ATAD-1, operated with air. The concentration of ammonia in ATAD-2 offgas was higher compared to ATAD-1 offgas, but the total amount of ammonia produced from ATAD-2 was less than that from ATAD-1 due to the lower oxygen flowrate. The ammonia gas produced from both ATAD reactors was successfully removed by the BF. The BF-1, connected with ATAD-1, removed 93% of ammonia at the loading rate of $9.4g\;NH_3-N/m^3/hr$. The BF-2, connected with ATAD-2, removed 95% of ammonia gas at the loading rate of $8.1g\;NH_3-N/m^3/hr$. As the nitrification process continued, pH value of recirculating solution continuously decreased due to the accumulation of nitrate. When the ammonia loading rate was less than $22.7g\;NH_3-N/m^3/h$, the proper replacing cycle of recirculating solution was in the range of 10 to 11 days. Almost 90% of total mass of nitrogen fed into the each BF was confirmed from the mass balance on nitrogen.

Waste Activated Sludge for Start-up Seed of Thermophilic Anaerobic Digestion (고온 혐기성 소화공정의 start-up seed로서의 호기성 폐 활성슬러지 이용가능성 연구)

  • Kim, Moonil;Shin, Kyuchul
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.490-495
    • /
    • 2005
  • Since there are very limited numbers of thermophilic anaerobic digesters being operated, it is often difficult to start up a new one using sludge from an existing reactor as a seed. However, for obvious reasons it seems few attempts have been made to compare the start-up performance of thermophilic anaerobic digestion using different sources of seed sludges. The purpose of this study was to evaluate the start-up performance of anaerobic digestion using aerobic Waste Activated Sludge (WAS) from a plant and mesophilic Anaerobic Digested Sludge (ADS) as the seed source at both mesophilic ($35^{\circ}C$) and thermophilic ($55^{\circ}C$) temperatures. In this study, two experiments were conducted. First, thermophilic anaerobic reactors were seeded with WAS (VSS = 4,400 mg/L) and ADS (VSS = 14,500 mg/L) to investigate start-up performance with a feed of acetate as well as propionate. The results show that WAS started to produce $CH_4$ soon after acetate feeding without a lag time, while ADS had a lag time of 10 days. When the feed was changed to propionate, WAS removed propionate down to below the detection limit of 10 mg/L, while ADS removed little propionate and produced little $CH_4$. Second, in order to further compare the methanogenic activity of WAS and ADS, both mesophilic and thermophilic reactors were operated. WAS acclimated to anaerobic conditions shortly and after acclimating it produced more $CH_4$ than ADS. WAS at mesophilic temperature biodegraded acetate at the same rate as for thermophilic. However WAS at mesophilic temperature biodegraded propionate at a much faster rate than at thermophilic. WAS as the seed source of anaerobic digestion resulted in much better performance than ADS at both mesophilic and thermophilic temperatures for both acetate and propionate metabolism.

In situ Analysis of Methanogenic Bacteria in the Anaerobic Mesophilic and Thermophilic Sludge Digestion (중온 및 고온 혐기성 소화에서 메탄생성균 군집 분석에 관한 연구)

  • Hwang, Sun-Jin;Jang, Hyun-Sup;Eom, Hyoung-Choon;Jang, Kwang-Un
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.515-521
    • /
    • 2004
  • Anaerobic digestion has many advantages over the more conventional aerobic treatment processes such as low levels of excess sludge production, low space (area) requirements, and the production of valuable biogas. The purpose of this study was to evaluate the effect of organic loading rate of anaerobic digestion on thermophilic($55^{\circ}C$) and mesophilic($35^{\circ}C$) conditions. Fluorescent in situ hybridization (FISH) method was also used to study the microbial community in the reactors. The stabilizing time in mesophilic anaerobic reactors was shorter as approximately 20 days than 40 days in the thermophilic anaerobic reactors. The amount of methane production rate in anaerobic reactors was independent of the concentrations of supplied substrates and the amount of methanogens. When the microbial diversity in the mesophilic and thermophilic reactors, which had been treated with acetate-based artificial wastewater, were compared, it was found that methanogenesis was carried out by microbial consortia consisting of bacteria and archaea such as methanogens. To investigate the activity of bacterial and archaeal populations in all anaerobic reactors, the amount of acetate was measured. Archaea were predominant in all reactors. Interestingly, Methanothrix-like methanogens appeared in mesophilic anaerobic reactors with high feed substrate concentrations, whereas it was not observed in thermophilic anaerobic reactors.