• Title/Summary/Keyword: thermophilic

Search Result 421, Processing Time 0.033 seconds

An Influence of Mixing Material Characteristics on the Composting of Food Waste (음식물쓰레기 퇴비화에서 혼합물 특성이 퇴비화에 미치는 영향)

  • 정준오;권혁구;이장훈
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.22-27
    • /
    • 2002
  • The composting practice has been recognized as the most popular way of controlling food waste and many attempt have been made in the field to establish more efficient and economical process. Some of the efforts are mixing cured compost with sawdust as alternative bulking agent, seeding commercially produced microorganism and/or combination of above. However, verification of such efforts is often restricted because of either the lack of engineering consideration on the limitation of composting facility scales. In this study, the effect of mixing materials in food waste composting was investigated by controlling the combination and the mixing ratio of them. When the cured compost was mixed with saw dust. the decomposition of organic material was proven to be more active by observing the compost temperature, the oxygen (O$_2$) consumption, and the cumulative carbon dioxide ($CO_2$) profile. However, the quantity of compost mix-ing seemed not to influence the reaction as long as the minimum required amount was mixed. The feeding of com-mercially produced microorganism had a tendency to prolong the thermophilic stage, which helped to increase the decomposition but it resulted in composting period. Regardless of the composting condition, bacteria and actinomycetes increased in population as the reaction approached to the end. The population of bacteria and actinomycetes were rel-atively higher than those of fungi and yeast throughout the reaction.

Bacterial Communities Developing during Composting Processes in Animal Manure Treatment Facilities

  • Yamamoto, Nozomi;Otawa, Kenichi;Nakai, Yutaka
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.6
    • /
    • pp.900-905
    • /
    • 2009
  • We analyzed succession of the bacterial communities during composting of animal manure in three individual facilities. Polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) targeting for the bacterial 16S rRNA gene were used to clarify the changes of bacterial community throughout each composting process. Our study revealed that the bacterial community structures differed during the composting process. The bacterial community in composting of facility A showed little change throughout the process. In the compost sample from facility B, its community had a small shift as the temperature increased. In compost from facility C, the temperature dynamically changed; it was shown that various bacterial communities appeared and disappeared as follows: in the initial phase, the members of phylum Bacteroidetes dominated; in the thermophilic phase, some bacteria belonging to phylum Firmicutes increased; towards the end, the community structure consisted of three phyla, Bacteroidetes, Firmicutes, and Proteobacteria. This study provides some information about the bacterial community actually present in field-scale composting with animal manure.

Thermoanaerobacter ethanolicus Amylopullulanase Thermophilicity와 Thermostability의 Molecular Analysis

  • Park, Jong-Hyeon
    • Bulletin of Food Technology
    • /
    • v.8 no.4
    • /
    • pp.179-191
    • /
    • 1995
  • Thermoanaerobacter ethanolicus유래 thermophilic amylopullulanase의 thermophilicity와 thermostability의 기작을 규명하기 위하여 N-말단과 C-말단으로부터 nested deletion mutatnt와 sitedirected mutagenesis등에 의한 변이효소를 제조, 분석하였다. 이러한 까다로운 변이효소를 제조하여 amylopullulanase의 특정부위가 효소의 thermophilicity와 thermostability에 관여하고 있는 것을 확인했다. N-말단의 start amino acid에서 194와 324 아미노산잔기에 이르는 부위 (TPR)가 이 효소의 높은 최적반응온도의 유지에 관련되어 있고 1102와 1224잔기에 이르는 부위 (TSR)는 thermodenaturation이 잘 일어나지 않도록 하고 있었다. 야생형 amylopullulanase (Apu), 변이효소중 ApuN342와 ApuN106/C379는 비슷한 효소비활성과 Km값을 가지고 있었다. TPR부위의 site-directed mutagenesis에 의한 변이효소중 P240A (proline$\rightarrow$alanine), P244A, P240A-P244A는 야생형의 최적반응온도 $80^{\circ}C$와 똑같았지만 효소의 열안전성(반감기)는 $85^{\circ}C$에서 21, 105, 128분을 보여 주었다. TSR에서의 변이효소중 P1159A, P1202A는 열안전성은 비슷하였지만 반응최적온도는 $85^{\circ}C$$90^{\circ}C$로 야생형 Apu보다 오히려 높아졌다. 따라서 proline은 분자내에서 thermophilicity와 thermostability를 항상 증가시키는 쪽으로 영향을 주지 않는 것으로 보인다. Proline은 그 위치와 주위의 다른 아미노산잔기와 같이 종합적으로 분자의 구조에 영향을 미치고 있는 것으로 판단된다.

  • PDF

Biogas Production and Utilization Technologies from Organic waste (유기성폐기물을 이용한 바이오가스 생산 및 활용기술)

  • Heo, Nam-Hyo;Lee, Seung-Heon;Kim, Byeong-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.202-205
    • /
    • 2008
  • Anaerobic digestion(AD) is the most promising method of treating and recycling of different organic wastes, such as OFMSW, household wastes, animal manure, agro-industrial wastes, industrial organic wastes and sewage sludge. During AD, i.e. degradation in the absence of oxygen, organic material is decomposed by anaerobes forming degestates such as an excellent fertilizer and biogas, a mixture of carbon dioxide and methane. AD has been one of the leading technologies that can make a large contribution to producing renewable energy and to reducing $CO_2$ and other GHG emission, it is becoming a key method for both waste treatment and recovery of a renewable fuel and other valuable co-products. A classification of the basic AD technologies for the production of biogas can be made according to the dry matter of biowaste and digestion temperature, which divide the AD process in wet and dry, mesophilic and thermophilic. The biogas produced from AD plant can be utilized as an alternative energy source, for lighting and cooking in case of small-scale, for CHP and vehicle fuel or fuel in industrials in case of large-scale. This paper provides an overview of the status of biogas production and utilization technologies.

  • PDF

Kinetic Study on the Enzymatic Production of D-Alanine from D-Aspartic Acid

  • Lee, Jae-Heung;Sung, Moon-Hee;Jeon, Yeong-Joong
    • Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.33-37
    • /
    • 2002
  • An enzymatic reaction for the production of D-alanine from D-aspartic acid and pyruvate as substrates by a thermostable D-amino acid aminotransferase (D-AAT) was investigated at various conditions In the temperature range of 40-70$\^{C}$ and pH range of 6.0-9.5. The D-AAT was produced with recombinant E. coli BL21, which hosted the chimeric plasmid pTLK2 harboring the D-AAT from the novel thermophilic Bacillus sp. LK-2. The enzyme reaction was shown to follow the Ping Pong Bi Bi mechanism. The K$\_$m/ values for D-aspartic acid and pyruvate were 4.38 mar and 0.72 mM, respectively. It was observed that competitive inhibition by D-alanine, the product of this reaction, was evident with the inhibition constant K$\_$i/ value of 0.1 mM. A unique feature of this reaction scheme is that the decorboxylation of oxaloacetic acid, one of the products, spontaneously produces pyruvate. Therefore, only a catalytic amount of pyruvate is necessary for the enzyme conversion reaction to proceed. A typical time-course kinetic study skewed that D-alanine up to 88 mM could be produced from 100 mM of D-aspartic acid with a molar yield of 1.0.

Studies on the Production of Thermostable Amylase. Part 1. Optimal Culture Conditions and Purification of Enzyme. (내열성 Amylase의 생산에 관한 연구 (제1보) 최적배양조건과 효소의 정제)

  • 오두환;이강표;변유량;유주현
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.2
    • /
    • pp.91-97
    • /
    • 1981
  • A thermophilic soil isolate Bacillus sp. Y-127 was selected for the production of thermostable amylase. The strain was used for the enzyme production and the thermostable amylase was characterized. The optimum cultural conditions for the enzyme production were 6$0^{\circ}C$ at pH 7.0 for 32 hours using a mineral medium containing 2% soluble starch and 0.2% yeast extract. The extra-cellular enzyme was purified about 123-folds with about 6% recovery. The purified enzyme was stable at pH between 4.0 and 7.0, and temperature up to 6$0^{\circ}C$.

  • PDF

Hydrolysis of Lactose in Whey by the BetavD-Galactosidase (Beta-D-Galactosidase에 의한 유청에 함유된 유당의 가수분해)

  • 최미진;허태련
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.1
    • /
    • pp.46-52
    • /
    • 1992
  • The optimum condition for the developement of a whey beverage from the concentrated whey was studied. Reverse osmosis system was used to obtain concentrated lactose from cheese whey. The hydrolysis degree of lactose by $\beta$-D-galactosidase was determined using HPLC (high performance liquid chromatography). The order of hydrolysis degree was 1:1, 2:l and 3:l concentrated lactose. It resulted from the concentrated salt which slightly inhibited $\beta$-D-galactosidase with constant enzyme dosage. The optimum condition for enzyme dosage was 2% in non-concentrated lactose, 3% in 2:l and 3% in 3:l concentrated lactose after 4 hours of reaction. When the 3:l concentrated lactose was used, more than 70% was hydrolyzed by 3% enzyme dosage. Furthermore the change of fermented whey by lactic acid bacteria was investigated. Based on the result of sensory test, the most favorable response was obtained at pH 4.2 and titratable acidity of 0.7% about 6 hours of fermentation at $37^{\circ}C$ with 2%: thermophilic starter.

  • PDF

Construction of a Fusion-Stoffel Fragment to Improve 3′-5′Exonuclease Activity

  • CHOI, HYEJA;YOUNGSOO KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.669-675
    • /
    • 1998
  • Taq DNA polymerase exhibits a sizable drawback compared to the other thermophilic DNA polymerases in that it demonstrates lower proof-reading activity due to the deficiency of 3'-5'exonuclease activity. A study was undertaken to improve the 3'-5' exonuclease activity in the PCR of Taq DNA polymerase. The three-dimensional structural alignment of the polymerase and 3'-5' exonuclease domains from the pol I family DNA polymerases explains why Taq DNA polymerase has just a background level of 3'-5'exonuclease activity. A comparison indicated that the two polymerase domains are very similar in primary and tertiary conformations, even though Taq DNA polymerase carries a much shorter 3'-5'exonuclease domain than that of E. coli DNA polymerase I. Those two polymerase domains were interchanged between Taq DNA polymerase and E. coli DNA polymerase I. The 3'-5' exonuclease domain from E. coli DNA polymerase I was separated and pasted into the polymerase domain of Taq DNA polymerase I, which resulted in a functional fusion-Stoffel fragment. The 3'-5'exonuclease activity of the fusion-Stoffel fragment increased up to 48% of the value of the Klenow fragment, while that of Taq DNA polymerase remained at 6.0% of the Klenow fragment.

  • PDF

Waste treatment with the pilot scale ATAD and EGSB pig slurry management system followed by sequencing batch treatment

  • Lee, Young-Shin;Han, Gee-Bong
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.277-284
    • /
    • 2015
  • Experiments for highly concentrated contaminants in pig waste slurry were carried out for the feasibility test of a pilot-scale innovative process scheme of engaging autothermal thermophilic aerobic digestion (ATAD) and expended granular sludge bed (EGSB) followed by sequencing batch reactor (SBR) system. Contaminants in pig waste slurry such as organic substance, total nitrogen (TN), ammonia nitrogen and total phosphorus (TP) contents were successfully reduced in the system. Total volatile solids (TVS) and chemical oxygen demands (COD) for organic matter in the feed were 32.92 g/L and 42.55 g/L respectively, and they were reduced by about 98.7% and 99.2%, respectively in the system. The overall removal efficiencies for TN and ammonium nitrogen were found to be 98.1 and 98.5%, respectively. The overall removal efficiency for total phosphorus was also found to be 92.5%. Faecal coliform density was reduced to <$1.2{\times}10^4CFU/g$ total solids. Biogas and $CH_4$ were produced in the range of 0.39-0.85 and $0.25-0.62m^3/kg$ [VS removed], respectively. The biogas produced in the system comprised of $295{\pm}26ppm$ (v/v) [$H_2S$].

Isolation and Characterization of Thermostable Xylanase-producing Paenibacillus sp. DG-22. (내열성 Xylanase를 생산하는 Paenibacillus sp. DG-22 균주의 분리 및 효소 특성)

    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.1
    • /
    • pp.22-28
    • /
    • 2004
  • A new moderate thermophilic bacterial strain DG-22 which produces thermostable xylanase was isolated from a timber yard soil in Kyungju, Korea. On the basis of morphological, biochemical and phylogenetic studies the new isolate was identified as a Paenibacillus species. Production of xylanase in this strain was strongly induced by adding xylan to the growth medium and repressed by glucose or xylose. No cellulase activity was detected. The temperature and pH for optimum activity were 8$0^{\circ}C$ and 5.0-5.5, respectively. The crude xylanase was stable at $60^{\circ}C$ and retained 60% of initial activity after 2h at $70^{\circ}C$. Zymogram analysis of the culture supernatant showed two xylanase active bands with molecular masses of 22 and 30 kDa.