• Title/Summary/Keyword: thermomechanical pulp

Search Result 34, Processing Time 0.02 seconds

THE ORIGIN AND DISTRIBUTION OF ANIONIC GROUPS IN TMP

  • Anna Sundberg;ndrey Pranovich;Bjarne Holmobom
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.04b
    • /
    • pp.254-258
    • /
    • 1999
  • The distribution of anionic groups in the fibers, the fines, the colloidal fraction and the dissolved fraction, respectively, of thermomechanical pulp (TMP) suspensions was determined and peroxide bleaching of spruce TMP were also studied. Spruce TMP was extracted with hexane, treated with alkali, or bleached with peroxide. Suspensions made at pH 5.5 were fractionated into long fibres, large fines, small fines, a colloidal fraction and a dissolved fraction. The charge of the fractions was determined using polyelectrolyte titration. To determined the origin of the charges, the contents of fatty acids, resin acids and acidic units in hemicelluloses in the different fractions were determined by has chromatography. Extraction of TMP with hexane prior to fractionation increased the measured charge of the fibres. The removal of the wood resin probably uncovered some carboxyl groups on the fibre surfaces, or improved th e penetration of polybrene into the pores of the fibres. The charge of the fines and the colloidal fraction was lower when the wood resin had been removed. Alkaline treatment of the TMP increased the charge of the fibres and fines, mainly because of demethylation of pectins. Alkaline treatment increased the charge also of the dissolved fraction, because of the release the charge also of the dissolved fraction, because of the release of pectic acids into the water phase. Alkaline peroxide bleaching further increased the charge of fibres and the dissolved fraction, most likely because of lignin oxidation. The charge of the colloidal fraction, consisting mainly of wood resin, was only slightly affected by alkaline treatment and peroxide bleaching. The anionic groups in TMP suspensions were mainly free uronic acids in the hemicelluloses. The contribution from the fatty and resin acids was substantial only for the colloidal fraction.

Study of Alkaline Peroxide Mechanical Pulp Made from Pinus densiflora (국내산 소나무로 제조된 APMP 특성 연구)

  • Lee, Ji-Young;Nam, Hyegeong;Kim, Chul-Hwan;Kwon, Sol;Park, Dong-Hun;Joo, Su-Yeon;Lee, Min-Seok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.1
    • /
    • pp.100-110
    • /
    • 2016
  • Alkaline Peroxide Mechanical Pulping (APMP) of Pinus densiflora harvested from domestic mountains was explored. APMP contributes to various advantages including pulp quality, elimination of the need for a bleaching process, and energy savings. Sequential treatment of impregnation of bleaching chemicals and refining not only overcome the concern of alkaline darkening of wood chips during chemical impregnation, but it also brightens the chips to the desired brightness levels suitable for writing and printing papers. APMP pulping from Pinus densiflora was greatly influenced by the dosage levels of hydrogen peroxide and sodium hydroxide. Alkaline peroxide treatment was carried out by applying one of three levels of hydrogen peroxide (1.5, 3, and 4.5% based on the oven-dried weight of the wood chips) and one of three levels of sodium hydroxide (1.5, 3, and 4.5% based on the oven-dried weight of the wood chips). Other chemicals including a peroxide stabilizers and metal chelation were constantly added for all treatments. Chemical treatment with a liquor-to-wood ration of 9:1 was carried out in a laboratory digestor. Compared to BTMP, APMP pulping displayed outstanding characteristics including the less requirement of refining energy, the better improvement of tensile strength, the more reduction of shives, and the greater increase of pulp brightness. In particular, when 4.5% of hydrogen peroxide with impregnation during 90 minutes was used, the brightness of APMP reached 64.9% ISO. Even though bulk of APMP was decreased with the increase of sodium hydroxide, a better and improved balance could be achieved between optical and strength properties. The spent liquor obtained from the discharge of the impregnation process at the dosage level of 4.5% hydrogen peroxide exhibited an equal level of residual peroxide with BTMP. In conclusion, APMP pulping showed successful results with Pinus densiflora due to its better response to the development of optical and physical properties compared to TMP pulping.

Thermal and Rheological Studies of Ricinodendron Heudelotii Wood for Its Pulp Production Potential

  • Ogunleye, Bolade Mercy;Fabiyi, James Sunday;Fuwape, Joseph A.
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.4
    • /
    • pp.323-328
    • /
    • 2016
  • Thermal stability and rheological behaviors of Ricinodendron heudelotii wood were investigated. Thermogravimetric analysis conducted at a heating rate of $10^{\circ}C/min$ from 20 to $600^{\circ}C$ in a nitrogen atmosphere indicated that there was no variation in the decomposition of the onset and final temperature for all the polymers. The thermal behaviours were investigated at a temperature range from 130 to $0^{\circ}C$ at $3^{\circ}C/min$, multi-frequencies of 0.1-10 Hz using dynamic mechanical analysis. N-methyl-2-pyrolidone saturated specimens were tested while submerged under the same solvent. Polymers decomposition pattern during thermogravimetric analysis are similar in the radial position of the wood. The glass transition temperature (Tg) of R. heudelotii is $45{\pm}1^{\circ}C$ at 0.1 Hz. The Tg differs from the innerwood to outerwood. The Tg showed that N-methyl-2-pyrolidone saturated R. heudelotii would require low energy consumption during chemi-thermomechanical pulping.

Exogenous-Water-Induced Thermal and Mechanical Effects on Dental Hard Tissue by the Er:YAG Laser: Free-running Mode (외부의 물과 Er:YAG Laser의 작용에 의한 Dental Hard Tissue에서의 열과 역학적 효과: Free-running 방식)

  • Kwon, Y.H.;Frederickson, C.J.;Motamedi, M.;Rastegar, S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.380-384
    • /
    • 1997
  • This study was performed to understand the exogenous-water-drop induced thermomechanical effect on the tooth in the free-running Er:YAG laser mode for the proper use of water as a laser energy absorber and coolant in dentistry. The ree-running Er:YAG laser was used in the dental hard tissue ablation study. A Microjet system was employed to dispense precise water drops. Ablation rate, recoil momentum, and temperature rise in the pulp cavity were measured with and without an exogenous water drop on the tooth surface. Exogenous water enhanced ablation rate in the thick tooth in which the ablation rate on the dry surface does not increase linearly but shows plateau. Optimal exogenous water volume was shifted from 2 nl to 4 nl as the laser energy was increased from 48 mJ to 145 mJ. The magnitude of the recoil momentum was increased as the volume of exogenous water increased. The results of this study suggest that we must pay attention to the recoil momentum or recoil pressure study or the optimal and safe usage of water in the dental treatment because these mechanical effects depend on the volume of exogenous water on the tooth surface.

  • PDF