• 제목/요약/키워드: thermoelectric power

검색결과 351건 처리시간 0.03초

온도차 및 부하 저항에 따른 열전모듈의 발전 특성 분석 (Experimental Study on the Power Generation of a Thermoelectric Module with Temperature Difference and Load Resistance)

  • 이공훈;김욱중;고득용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.1942-1947
    • /
    • 2007
  • A thermoelectric module can be used for cooling or power generation. The basic requirements to achieve a significant thermoelectric performance are the same for both generators and coolers. Thermoelectric modules with $Bi_2Te_3$ materials are usually employed in the cooling applications below room temperature but it can also be used for the power generation in the similar temperature range. In the present study, the power generation with a $Bi_2Te_3$ thermoelectric module has been investigated. The temperature difference between the hot and cold sides of the module is maintained with electric heater and cold water from the circulating water bath. The result shows that the electric current generated increases with temperature difference and decreases with the load resistance. However, the voltage increases with both the temperature difference and load resistance. The electric power increases with temperature difference and it has the maximum value when the load resistance is about 4 ${\Omega}$ for a given device.

  • PDF

온수를 이용한 열전발전기에서 유량변화에 따른 발전 특성 (Characteristic of Electric Generation for the Water Flow Rate in Thermoelctric Generator Using Hot Water)

  • 우병철;이희웅;서창민
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1333-1340
    • /
    • 2002
  • The objective of this study is to develop a thermoelectric generation system which converts unused energy from close-at-hand sources such as garbage incineration heat and industrial exhaust etc. into electricity. This paper presents applicability of a commercially available thermoelectric generator f3r waster heat recovery. The test facility consists of water heater, pump, thermoelectric module and aluminium tubes and hot and cold water is used as heat source and sink fluids. It is shown that the three components of thermoelectric research exist in manufacturing a thermoelectric generator. The first component is fabrication of thermoelectric materials, the second is manufacturing of thermoelectric generator with 32 thermoelectric modules. The last one is characteristic measuring of thermoelectric generator with 32 thermoelectric modules of two types, cooling and power purpose. It was found that the rate of cold and hot water is 25 and 37 liter per minute and the maximum power of thermoelectric generator is 28Watts and its efficiency is 1.04%.

열전관의 두께변화에 따른 열전발전기의 발전 특성 (Characteristics of electric power for thermoelectric generator with tube thickness)

  • 우병철;이희웅;이동윤;김익준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.1319-1321
    • /
    • 2001
  • The purpose of this study is to manufacture and test a thermoelectric generator which converts unused energy from close-at-hand sources, such as garbage incineration heat and industrial exhaust, to electricity. A manufacturing process and the properties of a thermoelectric generator are discussed before simulation the thermal stress and thermal properties of a thermoelectric module located between an aluminum tube and alumina plate. We can design the thermoelectric modules having the good properties of thermoelectric generation. Resistivity of thermoelectric module for thermoelectric generation consisting of 62 cells was $0.15{\sim}0.4{\Omega}$. The maximum power of thermoelectric generator using thermoelectric generation modules can be defined as temperature function, and in this case. It can be analogized the lineal relation between current and voltage characteristics as function of temperature. The thermoelectric generator using 32 thermoelectric modules was assembled with 32 directly connected modules that they constrained for two kinds of heat transfer tube with key joints.

  • PDF

Design and Preparation of High-Performance Bulk Thermoelectric Materials with Defect Structures

  • Lee, Kyu Hyoung;Kim, Sung Wng
    • 한국세라믹학회지
    • /
    • 제54권2호
    • /
    • pp.75-85
    • /
    • 2017
  • Thermoelectric is a key technology for energy harvesting and solid-state cooling by direct thermal-to-electric energy conversion (or vice versa); however, the relatively low efficiency has limited thermoelectric systems to niche applications such as space power generation and small-scale or high-density cooling. To expand into larger scale power generation and cooling applications such as ATEG (automotive thermoelectric generators) and HVAC (heating, ventilation, and air conditioning), high-performance bulk thermoelectric materials and their low-cost processing are essential prerequisites. Recently, the performance of commercial thermoelectric materials including $Bi_2Te_3$-, PbTe-, skutterudite-, and half-Heusler-based compounds has been significantly improved through non-equilibrium processing technologies for defect engineering. This review summarizes material design approaches for the formation of multi-dimensional and multi-scale defect structures that can be used to manipulate both the electronic and thermal transport properties, and our recent progress in the synthesis of conventional thermoelectric materials with defect structures is described.

폐열에너지 하베스팅을 위한 열전모듈 발전특성 연구 (Power generation characteristics of thermoelectric module for waste heat energy harvesting)

  • 윤진철;주정명;황종현;박성진
    • 에너지공학
    • /
    • 제25권4호
    • /
    • pp.184-189
    • /
    • 2016
  • $CO_2$ 배출 규제와 에너지 소비 절감의 요구가 늘어남에 따라, 버려지는 열을 수확하여 전기를 생산하기 위한 열전발전 연구가 최근 활발히 이루어지고 있다. 본 연구에서는 폐열 에너지 회수장치로 사용하기 위한 열전모듈의 발전 특성을 분석하였다. Bismuth telluride로 제작된 열전모듈에 다양한 온도 조건을 부여하며 이에 따른 열전 거동을 분석하였다. 또한 다양한 온도 조건에서의 열전모듈의 발전 효율을 실험 및 이론에 의해 분석하였다. 이로 부터, 열전모듈로 열에너지를 보다 효율적으로 회수하기 위한 최적의 작동조건을 제시하였다.

루프형 열사이폰을 이용한 열전발전 시스템 (Thermoelectric Power Generation System with Loop Thermosyphon)

  • 김선국;이석호;원병철;김대현;이충구
    • 대한기계학회논문집B
    • /
    • 제33권9호
    • /
    • pp.718-721
    • /
    • 2009
  • A new progressive advanced approach (Loop thermosyphon Thermoelectric Power generation System) is suggested to optimize heat recovery ability from vehicle exhaust gas. As an initial look at device feasibility, the present new TE system adopted the loop thermosyphon as a cooling heat exchanger. The TE system with loop thermosyphon was investigated in terms of working fluids, instability of system, amount of working fluid, and so on. Basically, the present experimental works have been focused on finding the optimum working condition of the system to improve thermoelectric power output and to obtain stable power generation to operate hybrid vehicles. The present experimental results with the loop thermosyphon TE module shows possibilities as an improved TE system for future thermoelectric hybrid vehicles.

LED터널등 모듈의 폐열활용을 위한 열전소자의 발전 성능 분석 (Analysis of the Thermoelectric Devices' Power Generation Performance for Utilizing the Waste Heat of LED Tunnel Lighting Module)

  • 정지영;허인성;이세일;김명호;유영문
    • 조명전기설비학회논문지
    • /
    • 제29권8호
    • /
    • pp.1-6
    • /
    • 2015
  • In this paper, we propose the LED(Light-Emitting-Diode) emergency lighting in a tunnel by using the thermoelectric devices. To achieve high generated power, thermoelectric device should be have high Seebeck coefficient and small contact area. Also, we reveal that a moderate heatsink required for high generated power. From the waste heat of LED tunnel lighting module (25W), the generated power was 0.062W by thermoelectric device, and it could illuminate for 1hour after charge the battery of emergency lighting during about 101hours.

열전발전용 소자를 이용한 열전발전기의 발전 특성 (Characteristics of electric power for thermoelectric generating module)

  • 우병철;이희웅;이동윤;김봉서;김병걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1614-1616
    • /
    • 2000
  • The purpose of this study is to manufacture and test a thermoelectric generator which converts unused energy from close-at-hand sources, such as garbage incineration heat and industrial exhaust, to electricity. A manufacturing process and the properties of a thermoelectric generator are discussed before simulating the thermal stress and thermal properties of a thermoelectric module located between an aluminum tube and alumina plate. We can design the thermoelectric modules having the good properties of thermoelectric generation. Resistivity of thermoelectric module for thermoelectric generation consisting of 62 cells was $0.15{\sim}0.4{\Omega}$. The maximum power of thermoelectric generator using thermoelectric generating modules can be defined as temperature function, and in this case it can be analogized the linear relation between current and voltage characteristics as function of temperature. The thermoelectric generator using 128 generating modules was assembled with 4 parallel connected modules sets composed with 32 directly connected modules.

  • PDF

열전소자의 열적조건 변화에 따른 발전 특성 (Performance of Thermoelectric Power Generator with Various Thermal Conditions)

  • 한훈식;김명기;엄석기;김서영
    • 설비공학논문집
    • /
    • 제22권3호
    • /
    • pp.165-170
    • /
    • 2010
  • Experiments have been performed to investigate the key parameters determining the performance of thermoelectric power generation. The experimental results obtained show that the power output significantly increases with the temperature difference between cold and hot sides of thermoelectric generator. However, the effect of the hot side temperature under the identical temperature difference on the overall performance of a thermoelectric generator is meager. The conversion efficiency defined as the ratio of the power generated to the heat absorbed at the hot side increases with the temperature difference. The behavior of the thermoelectric generator is shown to be consistent with the theoretical analysis. The optimum current giving the maximum conversion efficiency and the maximum conversion efficiency are linearly increased with the temperature difference.

MOCVD 법에 의한 Bi-Te계 열전소재 제조 및 박막형 열전소자 제작 (Growth of Bi-Te Based Materials by MOCVD and Fabrication of Thermoelectric Thin Film Devices)

  • 권성도;주병권;윤석진;김진상
    • 한국전기전자재료학회논문지
    • /
    • 제21권12호
    • /
    • pp.1135-1140
    • /
    • 2008
  • Bismuth-telluride based thin film materials are grown by Metal Organic Chemical Vapor Deposition(MOCVD). A planar type thermoelectric device has been fabricated using p-type $Bi_{0.4}Sb_{1.6}Te_3$ and n-type $Bi_2Te_3$ thin films. Firstly, the p-type thermoelectric element was patterned after growth of $4{\mu}m$ thickness of $Bi_{0.4}Sb_{1.6}Te_3$ layer. Again n-type $Bi_2Te_3$ film was grown onto the patterned p-type thermoelectric film and n-type strips are formed by using selective chemical etchant for $Bi_2Te_3$. The top electrical connector was formed by thermally deposited metal film. The generator consists of 20 pairs of p- and n-type legs. We demonstrate complex structures of different conduction types of thermoelectric element on same substrate by two separate runs of MOCVD with etch-stop layer and selective etchant for n-type thermoelectric material. Device performance was evaluated on a number of thermoelectric devices. To demonstrate power generation, one side of the sample was heated by heating block and the voltage output measured. As expected for a thermoelectric generator, the voltage decreases linearly, while the power output rises to a maximum. The highest estimated power of $1.3{\mu}W$ is obtained for the temperature difference of 45 K. we provide a promising procedure for fabricating thin film thermoelectric generators by using MOCVD grown thermoelectric materials which may have nanostructure with high thermoelectric properties.