• Title/Summary/Keyword: thermoelectric module

Search Result 143, Processing Time 0.036 seconds

Performance Characteristics of Thermoelectric Generator Modules For Parallel and Serial Electrical Circuits (전기회로 구성 방법에 따른 열전발전 모듈 성능 특성)

  • Kim, Yun-Ho;Kim, Myung-Kee;Kim, Seo-Young;Rhee, Gwang-Hoon;Um, Suk-Kee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.5
    • /
    • pp.259-267
    • /
    • 2010
  • An experiment has been performed in order to investigate the characteristics of multiple thermoelectric modules (TEMs) with electrical circuits. The open circuit voltage of TEM connected parallel circuit is equal to the sum of individual TEMs. In contrast, the open circuit voltage is equal to the average of that individual TEM for a series circuit. The power output and conversion efficiency of TEM for both parallel and series circuits increase as the operating temperature conditions for individual TEMs becomes identical. Comparing parallel with series circuits, the power generation performance is more excellent for series circuit than parallel circuit. This result is attributed to the power loss from the TEM with better power generation performance.

Current Status of Thermoelectric Power Generation Technology (열전발전 기술의 현황)

  • Lee, Jae Kwang;Kim, Jin Won;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.353-357
    • /
    • 2016
  • Following the population growth and civilization, resulted in energy-mass consumption society, research efforts on enhancing efficiency of traditional energy sources has been investigated. Among many alternatives, thermoelectric power generation technologies are highlighted as one of solutions for high heat energy efficiencies. Currently, the research area of thermoelectric power generation has been achieved over two of ZT value, which seems to have enough competitiveness as following the development of nano-technologies, in particular, for waste heat recovery, and the development of thermoelectric materials is still ongoing to obtain higher energy efficiencies. In this review, the recent development of thermoelectric materials and module technologies categorized by different temperature regions was briefly introduced.

Investigation of the Optimal Cooling Performance Using Peltier Module and Heat Sink (펠티에 소자 및 히트싱크를 이용한 최적 냉각성능에 관한 연구)

  • Lee, Dong-Ryul
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.65-70
    • /
    • 2006
  • This study is to experimentally evaluate the cooling performance of the Bonding type and Injection type of heat sink using three different kinds of industrial Peltier module by digital LabViewTM measurement. Injection type of heat sink could be more efficient for the heat transfer than Bonding type, even with 30% more radiating surface area. In addition, the experimental results revealed that the sufficient power supplied was able to show the better cooling performance of Peltier module. In order to verify the optimal cooling performance of the cooling device, two Peltier module, HMN 6040 and HMN 1550 with Bonding and Injection type of heat sink were used. The cooling performance with injection type of heat sink was 2.11% and 6.24% better than that with bonding type of heat sink under the HMN 6040 and HMN 1550, respectively.

  • PDF

A Consideration on the Application of Thermoelectric Cooler to Obesity Therapy (열전 냉각장치의 비만치료 적용 방법론 고찰)

  • Ko, Yun-Seok;Lee, Woo-Cheol;Kim, In-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1437-1442
    • /
    • 2012
  • The contemporary peoples focus on treatment of obesity in order to prevent the adult disease and to manage the beauty. Although surgical treatment of obesity shows the reliable cure effect, it could cause side effects and has a disadvantage that postoperative recovery period is long. Accordingly, this paper compares and analyzes the non-operative treatments which can be of help to treat obesity. Also, it considers the obesity therapy based on the Peltier cooling system. And finally a basic control circuit based on Peltier module is designed for Peltier cooling-based obesity therapy system.

Heat Flow and Cooling Performance of an Electronic Refrigerating Kimchi Jar (전자냉동 김치독의 열유동 및 성능 특성)

  • Song, Kyu-Soek;Kim, Kyung-Hwan;Lee, Seung-Chul;Ko, Chul-Kyun;Lee, Jae-Heon;Oh, Myung-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.928-936
    • /
    • 1999
  • The electronic refrigerating kimchi jar operates with a low noise because it contains no compressor but it consumes more energy than that of an refrigerator with compressor. In this paper, the heat flow characteristics and cooling performance of an electronic refrigerating kimchi jar are studied by means of experiments. When the storage temperature is kept in a range of $-5.7^{\circ}C$ to $4.1^{\circ}C$. in the case of three ambient temperatures; $12.7^{\circ}C$, $22.3^{\circ}C$ and $32.2^{\circ}C$, the cooling performance of $20{\ell}$ kimchi jar is investigated. The experiments show that the temperature difference that exists between kimchi jar and its ambient provides a measure of the coefficient of performance of kimchi jar. It is also found that ratio of net pumping heat to the heat pumping rate of thermoelectric module is independent of the temperature difference.

Study on the Thermal Design of Nuclear Battery for Lunar Mission (한국형 달 탐사용 원자력전지의 열제어 구조 연구)

  • Hong, Jintae;Son, Kwang-Jae;Kim, Jong-Bum;Park, Jong-Han;Ahn, Dong-Gyu;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.4
    • /
    • pp.271-277
    • /
    • 2016
  • For a stable electric power supply in the space, nuclear batteries have been used as the main power source in a spacecraft owing to their long lifetime and high reliability. In accordance with the plan for lunar mission in Korea, nuclear batteries will supply electricity to the rover that needs to be developed. According to the information about the estimated payload, Korea Atomic Energy Research Institute started with the conceptual design based on the previous studies in USA and Russia. Because a nuclear battery converts the decay heat of the radioisotope into electricity, thermal design, radiation shield, and shock protection need to be considered. In this study, two types of nuclear batteries, radial type and axial type, were designed according to the alignment of the thermoelectric module. Heat transfer analyses were performed to compare their thermoelectric efficiency, and test mockups were fabricated to evaluate their performances.

Development of Simulation Model for Waste Heat Recovery from Automotive Engine Exhaust Using Thermoelectric Generator (열전소자를 이용한 자동차 엔진 배기 폐열 회수 시스템 해석 모델 개발)

  • Kim, Ki-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1022-1026
    • /
    • 2013
  • Recently, the waste heat recovery technique using thermoelectric generator (TEG) in automotive engine has emerged to improve thermal efficiency in commercial vehicle. It is not difficult to recognize the numerous attempts that have been made to develop the TEG simulation model, but it is hard to find the model in conjunction with a particular heat engine system. In this study, 1-D commercial software AMESim was used to develop a computational model that can assess waste heat recovery from a diesel engine exhaust using TEG. The developed TEG simulation model can be used for evaluating the TEG performance of various types of TE module, and the diesel engine model can simulate any type of on and off-road diesel engines. The simulation results demonstrated that approximately 544.75W could be recovered from the engine exhaust and 40.4W could be directly converted into electricity using one TE module. The models developed in this study can be easily coupled with each other in the same computational program; thus, the models are expected to provide a viable tool for developing and optimizing a TEG waste heat recovery system in an automotive diesel engine.

A study of performance improvement of a thermoelectric generation system for the coastal fishing boats (연안어선용 열전발전 장치의 성능개선을 위한 연구)

  • LEE, Donggil;KIM, Hyunyoung;BAE, Sungyoun;KIM, Jiyeon;DO, Yonghyun;YANG, Yongsu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.3
    • /
    • pp.246-254
    • /
    • 2018
  • In this study, we developed a thermoelectric generation system for coastal fishing boats that allows for a high-density arrangement of thermoelectric modules, verified the improvement in performance by conducting comparative analysis between field test results and results from previous studies. The developed thermoelectric generation system was installed in a 3-ton gill-netter to analyze the engine revolutions per minute and energy production per day for each fishing process over a period of 20 days. From the experimental results, the maximum electric energy generated was 207.1 Wh, the minimum was 53.93 Wh and the average electric energy was 129.98 Wh. In accordance with the increasing of the engine r.p.m., the maximum electric production was 183 W at 1,500 r.p.m. It was approximately 80.5% of designed capacity, 227.2 W. Considering the result in the earlier research was 50.7% of designed capacity, 115.8 W. It was improved by 30% compared to the earlier one. The fishing operation was classified as departure, fishing and arrival. From the result on production analysis of electric energy, the composition of energy was 63% in fishing, 19.5% in departure and 17.5% in arrival. The electric energy production per unit hour was 42.8% in arrival, 32.9% in departure and 24.3% in fishing.

A Study on Control of Heat Generation in Computer using Thermoelectric Cooling System (열전냉각시스템을 이용한 컴퓨터의 발열제어에 관한 연구)

  • Oh, Yool-Kwon;Yang, Ho-Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.43-49
    • /
    • 2015
  • In recent years, the amount of heat generated inside of the computer has more increased because of high performance, multi-function, miniaturization and light weight. It is necessary to control the effective heat generation to improve performance and life extension of the computer. In this study, thermoelectric cooling system was manufactured using thermoelectric module and was attached to computer in order to control the heat generated inside computer. And the temperature distributions inside computer were experimentally measured and compared with and without thermoelectric cooling system to investigate the effect of cooling system. Also, to estimate the new cooling system which can substitute for the existing computer cooling system, temperature distributions inside computer were calculated by numerical analysis when there was no cooling system and was applied only cooling system to computer.

Multi-physics analysis for the design and development of micro-thermoelectric coolers

  • Han, Seung-Woo;Hasan, MD Anwarul;Kim, Jung-Yup;Lee, Hyun-Woo;Lee, Kong-Hoon;Kim, Oo-Joong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.139-144
    • /
    • 2005
  • A rigorous research is underway in our team, for the design and development of high figure of merits (ZT= 1.5${\sim}$2.0) micro-thermoelectric coolers. This paper discusses the fabrication process that we are using for developing the $Sb_2Te_3-Bi_2Te_3$ micro-thermoelectric cooling modules. It describes how to obtain the mechanical properties of the thin film TEC elements and reports the results of an equation-based multiphysics modeling of the micro-TEC modules. In this study the thermoelectric thin films were deposited on Si substrates using co-sputtering method. The physical mechanical properties of the prepared films were measured by nanoindentation testing method while the thermal and electrical properties required for modeling were obtained from existing literature. A finite element model was developed using an equation-based multiphysics modeling by the commercial finite element code FEMLAB. The model was solved for different operating conditions. The temperature and the stress distributions in the P and N elements of the TEC as well as in the metal connector were obtained. The temperature distributions of the system obtained from simulation results showed good agreement with the analytical results existing in literature. In addition, it was found that the maximum stress in the system occurs at the bonding part of the TEC i.e. between the metal connectors and TE elements of the module.

  • PDF