• 제목/요약/키워드: thermoelastic half-space

검색결과 30건 처리시간 0.027초

Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium

  • Lata, Parveen
    • Steel and Composite Structures
    • /
    • 제27권4호
    • /
    • pp.439-451
    • /
    • 2018
  • In the present investigation, a plane P (longitudinal) wave is made incident upon a transversely isotropic magnetothermoelastic solid slab of uniform thickness, interposed between two different semi-infinite viscoelastic solids. The transversely isotropic magnetothermoelastic sandwiched layer is homogeneous with combined effects of two temperature, rotation and Hall current in the context of GN Type-II and Type-III (1993) theory of thermoelasticity. The amplitude ratios of various reflected and refracted waves are obtained by using appropriate boundary conditions. The effect of energy dissipation on various amplitude ratios of longitudinal wave with angle of incidence are depicted graphically. Some cases of interest are also deduced from the present investigation.

The effect of magnetic field and inclined load on a poro-thermoelastic medium using the three-phase-lag model

  • Samia M. Said
    • Geomechanics and Engineering
    • /
    • 제37권3호
    • /
    • pp.243-251
    • /
    • 2024
  • In the current work, a poro-thermoelastic half-space issue with temperature-dependent characteristics and an inclined load is examined in the framework of the three-phase-lag model (3PHL) while taking into account the effects of magnetic and gravity fields. The resulting coupled governing equations are non-dimensional and are solved by normal mode analysis. To investigate the impacts of the gravitational field, magnetic field, inclined load, and an empirical material constant, numerical findings are graphically displayed. MATLAB software is used for numerical calculations. Graphs are used to visualize and analyze the computational findings. It is found that the physical quantities are affected by the magnetic field, gravity field, the nonlocal parameter, the inclined load, and the empirical material constant.

Photo-thermo-elastic interaction in a semiconductor material with two relaxation times by a focused laser beam

  • Jahangir, A.;Tanvir, F.;Zenkour, A.M.
    • Advances in aircraft and spacecraft science
    • /
    • 제7권1호
    • /
    • pp.41-52
    • /
    • 2020
  • The effect of relaxation times is studied on plane waves propagating through semiconductor half-space medium by using the eigen value approach. The bounding surface of the half-space is subjected to a heat flux with an exponentially decaying pulse and taken to be traction free. Solution of the field variables are obtained in the form of series for a general semiconductor medium. For numerical values, Silicon is considered as a semiconducting material. The results are represented graphically to assess the influences of the thermal relaxations times on the plasma, thermal, and elastic waves.

Generalized photo-thermal interactions under variable thermal conductivity in a semi-conducting material

  • Aatef D. Hobiny;Ibrahim A. Abbas;C Alaa A. El-Bary
    • Steel and Composite Structures
    • /
    • 제48권6호
    • /
    • pp.641-648
    • /
    • 2023
  • In this article, we explore the issue concerning semiconductors half-space comprised of materials with varying thermal conductivity. The problem is within the framework of the generalized thermoelastic model under one thermal relaxation time. The half-boundary space's plane is considered to be traction free and is subjected to a thermal shock. The material is supposed to have a temperature-dependent thermal conductivity. The numerical solutions to the problem are achieved using the finite element approach. To find the analytical solution to the linear problem, the eigenvalue approach is used with the Laplace transform. Neglecting the new parameter allows for comparisons between numerical findings and analytical solutions. This facilitates an examination of the physical quantities in the numerical solutions, ensuring the accuracy of the proposed approach.

마찰열을 고려한 미끄럼 접촉시 내부 복수 수평균열 전파해석 (Thermoelastic Finite Element Analysis of Double horizontal Subsurface Cracks Due to Sliding Surface Traction)

  • 이진영;김석삼;채영훈
    • Tribology and Lubricants
    • /
    • 제18권3호
    • /
    • pp.219-227
    • /
    • 2002
  • A linear elastic fracture mechanics analysis of double subsurface cracks propagation in a half-space subjected to moving thermomechanical surface traction was performed using the finite element method. The effect of frictional heat at the sliding surface on the crack growth behavior is analyzed in terms of the thermal load and peclet number. The crack propagation direction is predicted in light of the magnitudes of the maximum shear and tensile stress intensity factor ranges. When moving thermomechanical surface traction exists, subsurface horizontal cracks are propagation in-plane crack growth rate at the beginning but they are propagation out-of-plane crack growth rate by the frictional heat which is occurrence by the repeated sliding contact.

Analysis of stress, magnetic field and temperature on coupled gravity-Rayleigh waves in layered water-soil model

  • Kakar, Rajneesh;Kakar, Shikha
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.111-126
    • /
    • 2015
  • In this study, the coupled effects of magnetic field, stress and thermal field on gravity waves propagating in a liquid layer over a solid surface are discussed. Due to change in temperature, initial hydrostatic stress and magnetic field, the gravity-sound Rayleigh waves can propagate in the liquid-solid interface. Dispersion properties of waves are derived by using classical dynamical theory of thermoelasticity. The phase velocity of gravity waves influenced quite remarkably in the presence of initial stress parameter, magneto-thermoelastic coupling parameter in the half space. Numerical solutions are also discussed for gravity-Rayleigh waves. In the absence of temperature, stress and magnetic field, the obtained results are in agreement with classical results.

Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories

  • Ezzat, M.A.;El-Bary, A.A.
    • Steel and Composite Structures
    • /
    • 제24권3호
    • /
    • pp.297-307
    • /
    • 2017
  • A unified mathematical model of phase-lag Green-Naghdi magneto-thermoelasticty theories based on fractional derivative heat transfer for perfectly conducting media in the presence of a constant magnetic field is given. The GN theories as well as the theories of coupled and of generalized magneto-thermoelasticity with thermal relaxation follow as limit cases. The resulting nondimensional coupled equations together with the Laplace transforms techniques are applied to a half space, which is assumed to be traction free and subjected to a thermal shock that is a function of time. The inverse transforms are obtained by using a numerical method based on Fourier expansion techniques. The predictions of the theory are discussed and compared with those for the generalized theory of magneto-thermoelasticity with one relaxation time. The effects of Alfven velocity and the fractional order parameter on copper-like material are discussed in different types of GN theories.

마찰열을 고려한 미끄럼 접촉시 내부 복수 수평균열 전파해석 (Thermoelastic Finite Element Analysis of Multiple horizontal Subsurface Cracks Due to Sliding Surface Traction)

  • 이진영;김석삼
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.50-58
    • /
    • 2000
  • A linear elastic fracture mechanics analysis of multiful subsurface cracks propagation in a half-space subjected to moving thermomechanical surface traction was peformed using the finite element method. The effect of frictional heat at the sliding surface on the crack growth behavior is analyzed in terms of the thermal load and peclet number. The crack propagation direction is predicted in light of the magnitudes of the maximum shear and tensile stress intensity factor ranges. When moving thermomechanical surface traction exists, subsurface horizontal cracks are propagation in-plane crack growth rate at the beginning but they are propagation out-of-plane crack growth rate by the frictional heat which is occurrence by the repeated sliding contact.

  • PDF

A GN model of thermoelastic interaction in a 2D orthotropic material due to pulse heat flux

  • Hobiny, Aatef;Abbas, Ibrahim A.
    • Structural Engineering and Mechanics
    • /
    • 제80권6호
    • /
    • pp.669-675
    • /
    • 2021
  • A GN model with and without energy dissipations is used to discuss the waves propagation in a two-dimension orthotropic half space by the eigenvalues approach. Using the Laplace-Fourier integral transforms to get the solutions of the problem analytically, the basic formulations of the two-dimension problem are given by matrices-vectors differential forms, which are then solved by the eigenvalues scheme. Numerical techniques are used for the inversion processes of the Laplace-Fourier transform. The results for physical quantities are represented graphically. The numerical outcomes show that the characteristic time of pulse heat flux have great impacts on the studied fields values.

Propagation of plane waves in an orthotropic magneto-thermodiffusive rotating half-space

  • Sheokand, Suresh Kumar;Kumar, Rajeshm;Kalkal, Kapil Kumar;Deswal, Sunita
    • Structural Engineering and Mechanics
    • /
    • 제72권4호
    • /
    • pp.455-468
    • /
    • 2019
  • The present article is aimed at studying the reflection phenomena of plane waves in a homogeneous, orthotropic, initially stressed magneto-thermoelastic rotating medium with diffusion. The enuciation is applied to generalized thermoelasticity based on Lord-Shulman theory. There exist four coupled waves, namely, quasi-longitudinal P-wave (qP), quasi-longitudinal thermal wave (qT), quasi-longitudinal mass diffusive wave (qMD) and quasi-transverse wave (qSV) in the medium. The amplitude and energy ratios for these reflected waves are derived and the numerical computations have been carried out with the help of MATLAB programming. The effects of rotation, initial stress, magnetic and diffusion parameters on the amplitude ratios are depicted graphically. The expressions of energy ratios have also been obtained in explicit form and are shown graphically as functions of angle of incidence. It has been verified that during reflection phenomena, the sum of energy ratios is equal to unity at each angle of incidence. Effect of anisotropy is also depicted on velocities of various reflected waves.