• 제목/요약/키워드: thermoelastic half-space

검색결과 30건 처리시간 0.021초

2D deformation in initially stressed thermoelastic half-space with voids

  • Abbas, Ibrahim A.;Kumar, Rajneesh
    • Steel and Composite Structures
    • /
    • 제20권5호
    • /
    • pp.1103-1117
    • /
    • 2016
  • The present investigation is to study the plane problem in initially stressed thermoelastic half-space with voids due to thermal source. Lord-Shulman (Lord and Shulman 1967) theory of thermoelasticity with one relaxation time has been used to investigate the problem. A particular type of thermal source has been taken as an application of the approach. Finite element technique has been used to solve the problem. The components of displacement, stress, temperature change and volume fraction field are computed numerically. The resulting quantities are depicted graphically for different values of initial stress parameter. The relaxation time and the initial stress parameter have a significant effect on all distributions.

A novel of rotating nonlocal thermoelastic half-space with temperature-dependent properties and inclined load using the dual model

  • Samia M. Said
    • Structural Engineering and Mechanics
    • /
    • 제90권5호
    • /
    • pp.459-466
    • /
    • 2024
  • Eringen's nonlocal thermoelasticity theory is used to study wave propagations in a rotating two-temperature thermoelastic half-space with temperature-dependent properties. Using suitable non-dimensional variables, the harmonic wave analysis is used to convert the partial differential equations to ordinary differential equations solving the problem. The modulus of elasticity is given as a linear function of the reference temperature. MATLAB software is used for numerical calculations. Comparisons are carried out with the results in the context of the dual-phase lag model for different values of rotation, a nonlocal parameter, an inclined load, and an empirical material constant. The distributions of physical fields showed that the nonlocal parameter, rotation, and inclined load have great effects. When a nonlocal thermoelastic media is swapped out for a thermoelastic one, this approach still holds true.

Electro-magneto-thermoelastic surface waves in non-homogeneous orthotropic granular half space

  • Kakar, Rajneesh;Kakar, Shikha
    • Geomechanics and Engineering
    • /
    • 제7권1호
    • /
    • pp.1-36
    • /
    • 2014
  • The effect of various parameters on the propagation of surface waves in electro-magneto thermoelastic orthotropic granular non-homogeneous medium subjected to gravity and initial compression has been studied. All material coefficients are obeyed the same exponent-law dependence on the depth of the granular elastic half space. Some special cases investigated by earlier researchers have also been deduced. Dispersion curves are computed numerically and presented graphically.

A novel model of a nonlocal porous thermoelastic solid with temperature-dependent properties using an eigenvalue approach

  • Samia M. Said
    • Geomechanics and Engineering
    • /
    • 제32권2호
    • /
    • pp.137-144
    • /
    • 2023
  • The current article studied wave propagation in a nonlocal porous thermoelastic half-space with temperature-dependent properties. The problem is solved in the context of the Green-Lindsay theory (G-L) and the Lord- Shulman theory (L-S) based on thermoelasticity with memory-dependent derivatives. The governing equations of the porous thermoelastic solid are solved using normal mode analysis with an eigenvalue approach. In order to illustrate the analytical developments, the numerical solution is carried out, and the effect of local parameter and temperature-dependent properties on the physical fields are presented graphically.

Rayleigh waves in nonlocal porous thermoelastic layer with Green-Lindsay model

  • Ismail Haque;Siddhartha Biswas
    • Steel and Composite Structures
    • /
    • 제50권2호
    • /
    • pp.123-133
    • /
    • 2024
  • The paper deals with the propagation of Rayleigh waves in a nonlocal thermoelastic isotropic layer which is lying over a nonlocal thermoelastic isotropic half-space under the purview of Green-Lindsay model and Eringen's nonlocal elasticity in the presence of voids. The normal mode analysis is employed to the considered equations to obtain vector matrix differential equation which is then solved by eigenvalue approach. The frequency equation of Rayleigh waves is derived and different particular cases are also deduced. The effects of voids and nonlocality on different characteristics of Rayleigh waves are presented graphically.

Two-temperature thermoelastic surface waves in micropolar thermoelastic media via dual-phase-lag model

  • Abouelregal, A.E.;Zenkour, A.M.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권6호
    • /
    • pp.711-727
    • /
    • 2017
  • This article is concerned with a two-dimensional problem of micropolar generalized thermoelasticity for a half-space whose surface is traction-free and the conductive temperature at the surface of the half-space is known. Theory of two-temperature generalized thermoelasticity with phase lags using the normal mode analysis is used to solve the present problem. The formulas of conductive and mechanical temperatures, displacement, micro-rotation, stresses and couple stresses are obtained. The considered quantities are illustrated graphically and their behaviors are discussed with suitable comparisons. The present results are compared with those obtained according to one temperature theory. It is concluded that both conductive heat wave and thermodynamical heat wave should be separated. The two-temperature theory describes the behavior of particles of elastic body more real than one-temperature theory.

Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse

  • Abbas, Ibrahim A.;Alzahrani, Faris S.
    • Steel and Composite Structures
    • /
    • 제21권4호
    • /
    • pp.791-803
    • /
    • 2016
  • In this article, the problem of a two-dimensional thermoelastic half-space are studied using mathematical methods under the purview of the generalized thermoelastic theory with one relaxation time is studied. The surface of the half-space is taken to be thermally insulated and traction free. Accordingly, the variations of physical quantities due to by laser pulse given by the heat input. The nonhomogeneous governing equations have been written in the form of a vector-matrix differential equation, which is then solved by the eigenvalue approach. The analytical solutions are obtained for the temperature, the components of displacement and stresses. The resulting quantities are depicted graphically for different values of thermal relaxation time. The result provides a motivation to investigate the effect of the thermal relaxation time on the physical quantities.

Influence of gravity, locality, and rotation on thermoelastic half-space via dual model

  • Samia M. Said
    • Structural Engineering and Mechanics
    • /
    • 제89권4호
    • /
    • pp.375-381
    • /
    • 2024
  • In this paper, Eringen's nonlocal thermoelasticity is constructed to study wave propagation in a rotating two-temperature thermoelastic half-space. The problem is applied in the context of the dual-phase-lag (Dual) model, coupled theory (CD), and Lord-Shulman (L-S) theory. Using suitable non-dimensional fields, the harmonic wave analysis is used to solve the problem. Comparisons are carried with the numerical values predicted in the absence and presence of the gravity field, a nonlocal parameter as well as rotation. The present study is valuable for the analysis of nonlocal thermoelastic problems under the influence of the gravity field, mechanical force, and rotation.

Influence of an inclined load on a nonlocal fiber-reinforced visco-thermoelastic solid via 3PHL

  • Samia M. Said
    • Structural Engineering and Mechanics
    • /
    • 제90권6호
    • /
    • pp.569-575
    • /
    • 2024
  • The objective of this study is to investigate the influence of an inclined load, location, and time on the behavior of a fiber-reinforced visco-thermoelastic half-space. The displacement, stress, and temperature distributions are derived from the normal mode analysis. The problem is analyzed using a three-phase-lag model. MATLAB programming is employed to ascertain the physical fields with appropriate boundary conditions and to perform numerical computations. The outcomes are then examined with different inclination loads, time, and location settings.

Effect of heat source and gravity on a fractional order fiber reinforced thermoelastic medium

  • Jain, Kavita;Kalkal, Kapil Kumar;Deswal, Sunita
    • Structural Engineering and Mechanics
    • /
    • 제68권2호
    • /
    • pp.215-226
    • /
    • 2018
  • In this article, the theory of fractional order two temperature generalized thermoelasticity is employed to study the wave propagation in a fiber reinforced anisotropic thermoelastic half space in the presence of moving internal heat source. The whole space is assumed to be under the influence of gravity. The surface of the half-space is subjected to an inclined load. Laplace and Fourier transform techniques are employed to solve the problem. Expressions for different field variables in the physical domain are derived by the application of numerical inversion technique. Physical fields are presented graphically to study the effects of gravity and heat source. Effects of time, reinforcement, fractional parameter and inclination of load have also been reported. Results of some earlier workers have been deduced from the present analysis.