• 제목/요약/키워드: thermoelastic deformation

검색결과 57건 처리시간 0.022초

Vibration of piezo-magneto-thermoelastic FG nanobeam submerged in fluid with variable nonlocal parameter

  • Selvamani Rajendran;Rubine Loganathan;Murat Yaylaci;Ecren Uzun Yaylaci;Mehmet Emin Ozdemir
    • Advances in nano research
    • /
    • 제16권5호
    • /
    • pp.489-500
    • /
    • 2024
  • This paper studies the free vibration analysis of the piezo-magneto-thermo-elastic FG nanobeam submerged in a fluid environment. The problem governed by the partial differential equations is determined by refined higher-order State Space Strain Gradient Theory (SSSGT). Hamilton's principle is applied to discretize the differential equation and transform it into a coupled Euler-Lagrange equation. Furthermore, the equations are solved analytically using Navier's solution technique to form stiffness, damping, and mass matrices. Also, the effects of nonlocal ceramic and metal parts over various parameters such as temperature, Magnetic potential and electric voltage on the free vibration are interpreted graphically. A comparison with existing published findings is performed to showcase the precision of the results.

A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations

  • Attia, Amina;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.;Alwabli, Afaf S.
    • Structural Engineering and Mechanics
    • /
    • 제65권4호
    • /
    • pp.453-464
    • /
    • 2018
  • In this paper, an efficient higher-order shear deformation theory is presented to analyze thermomechanical bending of temperature-dependent functionally graded (FG) plates resting on an elastic foundation. Further simplifying supposition are made to the conventional HSDT so that the number of unknowns is reduced, significantly facilitating engineering analysis. These theory account for hyperbolic distributions of the transverse shear strains and satisfy the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. Power law material properties and linear steady-state thermal loads are assumed to be graded along the thickness. Nonlinear thermal conditions are imposed at the upper and lower surface for simply supported FG plates. Equations of motion are derived from the principle of virtual displacements. Analytical solutions for the thermomechanical bending analysis are obtained based on Fourier series that satisfy the boundary conditions (Navier's method). Non-dimensional results are compared for temperature-dependent FG plates and validated with those of other shear deformation theories. Numerical investigation is conducted to show the effect of material composition, plate geometry, and temperature field on the thermomechanical bending characteristics. It can be concluded that the present theory is not only accurate but also simple in predicting the thermomechanical bending responses of temperature-dependent FG plates.

Postbuckling and nonlinear vibration of composite laminated trapezoidal plates

  • Jiang, Guoqing;Li, Fengming;Zhang, Chuanzeng
    • Steel and Composite Structures
    • /
    • 제26권1호
    • /
    • pp.17-29
    • /
    • 2018
  • The thermal effects on the buckling, postbuckling and nonlinear vibration behaviors of composite laminated trapezoidal plates are studied. Aiming at the complex plate structure and to simulate the temperature distribution of the plate, a finite element method (FEM) is applied in this paper. In the temperature model, based on the thermal diffusion equation, the Galerkin's method is employed to establish the temperature equation of the composite laminated trapezoidal plate. The geometrical nonlinearity of the plate is considered by using the von Karman large deformation theory, and combining the thermal model and aeroelastic model, Hamilton's principle is employed to establish the thermoelastic equation of motion of the composite laminated trapezoidal plate. The thermal buckling and postbuckling of the composite laminated rectangular plate are analyzed to verify the validity and correctness of the present methodology by comparing with the results reported in the literature. Moreover, the effects of the temperature with the ply-angle on the thermal buckling and postbuckling of the composite laminated trapezoidal plates are studied, the thermal effects on the nonlinear vibration behaviors of the composite laminated trapezoidal plates are discussed, and the frequency-response curves are also presented for the different temperatures and ply angles.

전산용접역학의 최근 동향 (Recent Development in Computational Welding Mechanics)

  • 임세영;한유성;이계형;한명수;최강혁
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.87-91
    • /
    • 2009
  • Welding is one of the most important joining processes and the effect of welding residual stresses in the structure has a great deal of influence on its quality. In this paper, recent development in computational welding mechanics, particularly calculation of welding residual stresses, is introduced. The hypoelastic formulation of finite element analysis for thermoelastic-plastic deformation is applied to welding processes to find residual deformations and stresses. Leblond's phase evolution equation coupled with the energy equation is employed to calculate the phase volume fraction; this plays an important role as a kinetics parameter affecting phase fraction effects in the mechanical constitutive equation of welded materials. Furthermore, transformation plasticity is taken into account for an accurate evaluation of stress. The influence of the phase transformation and the transformation plasticity on residual stress is investigated by means of numerical analyses using metallurgical parameters in Leblond's phase evolution equation that are adjusted with respect to various cooling rates in a CCT-diagram. Coding implementation is conducted by way of the ABAQUS user subroutines, UMAT.

  • PDF

미시역학적 유한요소 모델을 이용한 다공성 복합재료의 기공 탄성 인자 산출 (Calculation of Poroelastic Parameters of Porous Composites by Using Micromechanical Finite Element Models)

  • 김성준;한수연;신의섭
    • Composites Research
    • /
    • 제25권1호
    • /
    • pp.1-8
    • /
    • 2012
  • 본 논문에서는 다공성 복합재료의 열탄성 거동 예측을 위하여 미시역학적 유한요소 해석을 통해 기공 탄성 인자를 측정하였다. 먼저 기공 압력에 의한 복합재료의 응력 및 변형 상태를 기술하기 위해서 구성 방정식에 기공 탄성 인자를 도입하였다. 기공 탄성 인자의 산출에 필요한 기공 압력에 의한 팽창 변형도와 기공 형성에 따른 균질화 탄성 계수의 저하를 측정하였다. 기공의 형상, 크기, 배열 형태에 따른 이차원 대표 체적 요소의 모델링과 유한요소 해석을 수행하였다. 기공도, 재료 이 방성이 기공 탄성 인자에 미치는 영향과 기공 압력에 따른 변형 에너지 밀도 분포를 살펴보았다. 또한, 측정된 기공 탄성 인자의 유용성을 검토하기 위하여 탄소/페놀릭 복합재료의 열탄성 거동을 예측하였다.

Thermoelastic eigenfrequency of pre-twisted FG-sandwich straight/curved blades with rotational effect

  • Souvik S. Rathore;Vishesh R. Kar;Sanjay
    • Structural Engineering and Mechanics
    • /
    • 제86권4호
    • /
    • pp.519-533
    • /
    • 2023
  • This work focuses on the dynamic analysis of thermal barrier coated straight and curved turbine blades modelled as functionally graded sandwich panel under thermal environment. The pre- twisted straight/curved blade model is considered to be fixed to the hub and, the complete assembly of the hub and blade are assumed to be rotating. The functionally graded sandwich composite blade is comprised of functionally graded face-sheet material and metal alloy core. The constituents' material properties are assumed to be temperature-dependent, however, the overall properties are evaluated using Voigt's micromechanical scheme in conjunction with the modified power-law functions. The blade model kinematics is based on the equivalent single-layer shear deformation theory. The equations of motion are derived using the extended Hamilton's principle by including the effect of centrifugal forces, and further solved via 2D- isoparametric finite element approximations. The mesh refinement and validation tests are performed to illustrate the stability and accurateness of the present model. In addition, frequency characteristics of the pre-twisted rotating sandwich blades are computed under thermal environment at various sets of parametric conditions such as twist angles, thickness ratios, aspect ratios, layer thickness ratios, volume fractions, rotational velocity and blade curvatures which can be further useful for designing the blade type structures under turbine operating conditions.

Nonlinear thermoelastic analysis of FGM thick plates

  • Bouhlali, Malika;Chikh, Abdelbaki;Bouremana, Mohammed;Kaci, Abdelhakim;Bourada, Fouad;Belakhdar, Khalil;Tounsi, Abdelouahed
    • Coupled systems mechanics
    • /
    • 제8권5호
    • /
    • pp.439-457
    • /
    • 2019
  • In this paper, a new application of a four variable refined plate theory to analyze the nonlinear bending of functionally graded plates exposed to thermo-mechanical loadings, is presented. This recent theory is based on the assumption that the transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces, and similarly, the shear components do not contribute toward bending moments. The derived transverse shear strains has a quadratic variation across the thickness that satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The material properties are assumed to vary continuously through the thickness of the plate according to a power-law distribution of the volume fraction of the constituents. The solutions are achieved by minimizing the total potential energy. The non-linear strain-displacement relations in the von Karman sense are used to derive the effect of geometric non-linearity. It is concluded that the proposed theory is accurate and simple in solving the nonlinear bending behavior of functionally graded plates.